

COURSE OVERVIEW IE0190 Process Instrumentation and Automation

Course Title

Process Instrumentation and Automation

Course Date/Venue

Session 1: February 16-20, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: August 18-22, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

IE0190

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions exercises. Theory learnt will be applied using one of our state-of-the-art simulators.

This course is designed to benefit you with practical up-to-date information on the application of PLC's and SCADA to the automation and process control of plants and factories. It is suitable for people who have little or no exposure to PLC and SCADA but expect to become involved in some or all aspects of PLC and SCADA installation and Programming.

While the course is ideal for people who are new to PLC and SCADA, it will be of value to those who already have the basic skills, but need to refresh and update their basic knowledge. It aims to give practical advice from experts in the field, to assist you to correctly plan, program and install a PLC with a shorter learning curve and more confidence.

A selection of real world case studies is used to illustrate the key concepts with examples of real world working PLC and SCADA systems in process, utilities and manufacturing industries. The course will be an excellent opportunity to network with your peers as well as gain significant new information and techniques.

This course will cover most popular PLC's used in the industry, such as Quantum, Allen Bradley, Siemens, Bristol, Emersons, Omron and Telemechanique Shneider Modicon with extended case studies for Allen Bradley and Siemens.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply a comprehensive knowledge on Programmable Logic Controllers (PLC), telemetry and employ SCADA programming in process control
- Analyze the system parts and power supplies of a PLC hardware including the block diagram of a typical PLC, PLC processor module and memory organization
- Discover the underlying principles of a PLC software including the programming devices, number systems, memory components, data structures, operating modes and limitations
- Discuss the PLC systems design, installation and maintenance and review the documentation and troubleshooting techniques used in the system
- Practice PLC programming using Allen Bradley and Siemens Simulators
- Apply the concepts and common elements of IEC 1131-3 including its programming languages, instruction list, function block diagram and sequential function chart
- Employ the principles of data communications, object linking and embedding in Process Control (OPC) and be able to recognize their importance in PLC and SCADA systems
- Implement the concept of Operator Interfaces (OIU) and describe the operator interface programming such as its configuration, graphical languages, good and bad parts
- Determine the concept, terminology and components of SCADA system and increase in-depth knowledge on SCADA software
- Implement the complete procedures and requirements in SCADA programming and be able to practice how to create and configure a SCADA system using the various utilities, process control, commands and system components

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of PLC and SCADA for those who have little or no exposure to PLC and SCADA but expect to become involved in some or all aspects of PLC and SCADA. Further, the course will be of value to those who already have the basic skills but need to refresh and update their basic knowledge.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

*BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Pan Marave, PE, MSc, BEng, is a Senior Electrical & **Instrumentation Engineer** with over **45 years** of extensive experience in Oil, Gas, Petrochemical, Refinery & Power industries. expertise includes Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD); DCS, SCADA & PLC; Measurement (Flow, Temperature, Pressure); Process Analyzers & Analytical Instrumentation; Process Control, Instrumentation &

Safeguarding; Process Controller, Control Loop & Valve Tuning; Industrial Distribution Systems; Industrial Control & Control Systems, Power Systems Protection & Relaying; Earthing, Bonding, Grounding, Lightning & Surge Protection: Electric Power Substation & Systems; Electrical Engineering Principles; Motor Control Circuit: Electrical Fault Analysis: Electrical Networks & Distribution Cables; Circuit Breakers, Switchgears, Transformers, Hazardous Areas Classification and Detailed Engineering Drawings, Codes & Standards. Furthermore, he is also well-versed in Microprocessors Structure, Lead Auditor (ISO 9000:2000), ISO 9002, Quality Assurance, and Projects & Contracts Management.

Presently, Mr. Marave is the Technical Advisor of Chamber of Industry & Commerce in Greece. Prior to this, he gained his thorough practical experience through several positions as the **Technical Instructor**, **Engineering Manager**, Electronics & Instruments Head, Electrical, Electronics & Instruments Maintenance Superintendent, Assistant General Technical Manager and Engineering Supervisor of various international companies such as the Alumil Mylonas, Athens Papermill, Astropol and the Science Technical Education.

Mr. Marave is a Registered Professional Engineer and has Master's and Bachelor's degrees in Electrical Engineering from the Polytechnic Institute of New York and Pratt Institute of New York (USA) respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an active member of the Technical Chamber and the Institute of Electrical and Electronics Engineer (IEEE) in Greece. He has presented and delivered numerous international courses, conferences, trainings and workshops worldwide.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction Goal and Plan of the Course • Introduction and Brief History of PLC • Industrial Control Systems and the PLC Part • Why is PLC so Widely Used • PLC Concerns and Alternatives
0930 - 0945	Break
0945 – 1200	Fundamentals of PLC Hardware Block Diagram of Typical PLC • PLC Processor Module, Memory Organization • Input and Output Modules, Types, Power Supply • Power Supplies
1200 - 1230	Fundamentals of PLC Software Programming Devices, On-Line and Off-Line Programming • Number Systems and the Computer World • PLC Numbers Handling • Memory Components, Data Structure and Addressing • Methods of Representing Logic, Boolean Algebra, Instruction Code, Graphical Presentation - Functional Logic Diagrams and Ladder Logic
1230 – 1245	Break
1245 - 1330	Fundamentals of PLC Software (cont'd) Typical Ladder Logic Instruction Set • Comparison of Different Manufacturers, Memory and Data Representation and Instruction Code • System Software, System Scanning, Watch Dog Timer, Self Test • Internal Errors, Fault Table for PLC and I/O, Errors Handling • Operating Modes, Use and Limitations
1330 – 1420	PLC Systems Design, Installation & Maintenance Process and Mechanical Control Diagrams • Process and Machine Control Descriptions • Selection of PLC and Modules • Control System Diagram • Wiring Diagrams • Control Panel Design, Equipment Layout, Good Installation Practice • Programming, Start-Up, Testing, Commissioning • Documentation, Maintenance, Troubleshooting, Techniques and Examples • Wrap up of the PLC Basics, Specific Terminology, Practical Queries
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

	PLC Programming
0730 - 0900	System Introduction • Basics Functions • DC Motor Run/Jog • Tools, Forcing
	and Toggling, On-line Changes
0900 - 0930	PRACTICAL SESSION #1
0930 - 0945	Break
	Lab Programming on Siemens SIMATIC & WinCC
0945 - 1045	Timers and Counters • Motor Forward/Reverse • Pipeline Pumping Station •
	Data Operations • Tracking Numbers in Storage
1045 - 1100	PRACTICAL SESSION #2

1100 – 1200	Lab Programming on Siemens SIMATIC & WinCC (cont'd)
	Motor Demand Start • Move Operations • Tracking Part Number with a Shift
	Register • Pulse Generator/Cookie Filling • 16 Bit Drum Sequencing • Bit
	Operations • Good Parts/Bad Parts
1200 - 1230	PRACTICAL SESSION #3
1230 - 1245	Break
1245 – 1400	Lab Programming on Siemens SIMATIC & WinCC (cont'd)
	Motor Sequencing • Motor Sequencing 2 • Fault References and PLC
	Troubleshooting • Time of Day Display • Fault References
1400 - 1420	PRACTICAL SESSION #4
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3	
0730 - 0930	Introduction to IEC 1131-3
	Concepts • Common Elements • Top-Bottom and Bottom-Up Approaches •
	Programming Languages: Structured Text • Instruction List • Function Block
	Diagrams • Sequential Function Chart • Ladder Diagrams
0930 - 0945	Break
	Data Communications
	Serial Interface Standards: RS-232C, RS-422 (RS-423) and RS-485
0945 - 1015	Communication Links - Status, Errors, Timeout (Watchdog) • Protocols -
	Proprietary and Standard, Modbus, DH+ • Local Area Network, Topology,
	Ethernet, Control Networks • ISO/OSI Communications Standard
	Object Linking & Embedding in Process Control (OPC)
1015 – 1100	Introduction to OPC Standards • Confirmed and Developing Specifications •
	Practical Control System Benefits from OPC Compliance
	Operator Interfaces (OIU)
1100 – 1200	Status and Alarm Messages • Operator Control Actions • Linking Displays to the
	PLC • PLC Manufacturer or Third Party - Depend on Connectivity
1200 – 1215	Break
1215 – 1300	Operator Interface Programming
	System Introduction • Configuration
1300 - 1400	Operator Interface Programming (cont'd)
	Graphical Language • PLC Connection • Operator's Push Button • DC Motor
	Run/Jog • Operator's Indication • DC Motor Running • Good Parts/Bad Parts
1400 – 1420	PRACTICAL SESSION #5
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

Duy T	
0730 - 0830	Fundamentals of SCADA
	Concept, Terminology and Components • SCADA System Hardware •
	Communication Architecture • Radio and Wireless Basics • SCADA and
	Telemetry
0830 - 0930	SCADA Software
	Configuration of SCADA Systems • Best Practice Configuration of Alarms •
	Rules for SCADA Design • SCADA and OPC • Security and Risk Management
0930 - 0945	Break

	Introduction to GE Cimplicity HMI/SCADA Software
0945 - 1045	Modular Multitasking 32 Bit Design • Distributed Architecture • Microsoft
	Object Technology, ActiveX Controls • Device Connectivity, Open Data Base
	Connectivity • Feature Set, Options, Base
1045 - 1130	SCADA Programming Basics
	Creating a Project, Master and Data • Configuration Data, ISAM Files, idx Files
	• Security, Users Roles (Privileges) and Resources (Areas) • Devices and Points
	Assigning to a Resource • System Configuration
	SCADA Programming
1130 – 1215	Creating a New Cimpliciy Project • Configuring Devices, Ports, Protocols, Users,
1130 - 1213	Resources, Roles, Points, Alarm Classes, Alarm Strings and Alarms • Example
	with 4 Users, 3 PLCs, Robot and Masher
1215 – 1230	Break
1230 - 1300	PRACTICAL SESSION #6
1300 – 1400	SCADA Programming (cont'd)
	Access a Point Control Panel • Configuring a Point Control Panel • Modifying
	Points and their Alarms • Saving a Point Control Panel as a File • Creating and
	Configure a Graphic Screen • Configuring SmartObjects, Animation • Creating
	Events and Actions in Objects • Linking SmartObjects
1400 - 1420	PRACTICAL SESSION #7
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

SCADA Programming (cont'd)
Creating Automated Events and Actions • Displaying and Trigger Events and
Actions in the BCEUI (Basic Control Engine User Interface) • Configuring a
Simple Script Using Wizards • Configuring a New Button to Trigger an Event
that Runs the Script • Creating New Tables in Database Logger • Configuring
Logging and Maintenance Options in the Tables • Adding Points to the New
Tables • Logging Alarms and Events
PRACTICAL SESSION #8
Break
SCADA Programming (cont'd)
Executing a Quick Trend from your Project's Workbench • Creating an Embedded
Trend Chart to display Historical Data • Applying ActiveX Trend Methods to a
Trend Chart • Creating a Stand Alone Alarm Viewer • Creating and Configure
an Embedded Alarm Viewer • Adding Alarm Sounds to Alarm Classes
PRACTICAL SESSION #9
SCADA Programming (cont'd)
Using the Import/Export Command Utility • Using the IDTPOP Utility to View
Tables in the Database • Using Process Control to Display Project Processes,
Start/Stop Processes • Opening Project Status Logs to View Project and System
Error Messages • Accessing the Windows NT Performance Monitor and Create a
Graphic Display, View Running Applications and Processes • Accessing the Point
Cross Reference Tool to View the Use and Locations of Pints in the Project
PRACTICAL SESSION #10
Break

1230 – 1315	SCADA Programming (cont'd) Configuring Project for Broadcast • Creating a Remote Project to Enable Enterprise Server • Configuring Text Objects for Point By Address • Configuring Command Line Switches on Screen Shortcuts
1315 - 1345	PRACTICAL SESSION #11
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Allen Bradley SLC 500", "AB Micrologix 1000 (Digital or Analog)", "AB SLC5/03", "AB WS5610 PLC", "Siemens S7-1200", Siemens S7-400" "Siemens SIMATIC S7-300", "Siemens S7-200" "GE Fanuc Series 90-30 PLC", "Schneider Electric Magelis HMISTU", "Siemens SIMATIC Step 7 Professional Software", and "HMI SCADA".

Allen Bradley SLC 500 Simulator

Allen Bradley Micrologix 1000 Simulator (Analog)

Allen Bradley WS5610 PLC Simulator PLC5

Allen Bradley Micrologix 1000 Simulator (Digital)

Allen Bradley SLC 5/03

Siemens S7-1200 Simulator

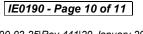
Siemens S7-400 Simulator

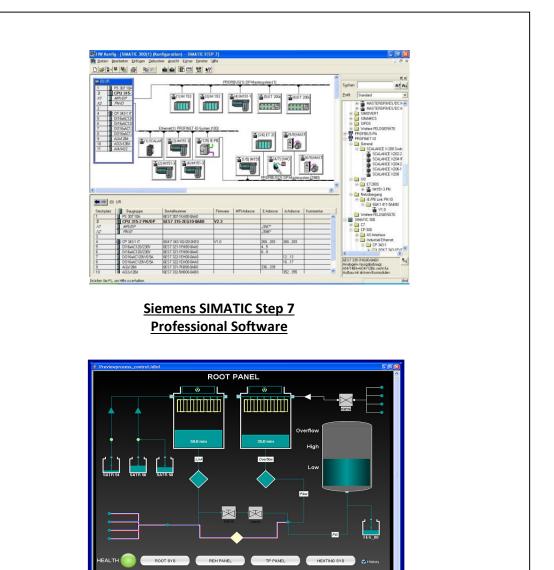
Siemens SIMATIC S7-300

Siemens S7-200 Simulator

GE Fanuc Series 90-30 PLC Simulator

Schneider Electric Magelis HMISTU





HMI SCADA

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

