

COURSE OVERVIEW PE0190 Blow Down System

Course Title Blow Down System

Course Date/Venue

Session 1: February 16-20, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE Session 2: August 18-22, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

CEUS

(30 PDHs)

Course Reference PE0190

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Blow Down System. It covers the purpose and importance of blow down systems in petroleum operations; the principles of pressure and temperature control and the types and components of blow down systems; the regulatory and industry standards and design criteria for blow down systems; the blow down valve selection and sizing as well as flare system and knockout drum design; the process simulation tools and dynamic blow down studies for emergency situations; and the pressure transients and blow down time calculations and the impact of blow down on process equipment.

Further, the course will also discuss the environmental and safety considerations in blow down design; the best practices in blow down system engineering; the blow down system start-up and shutdown procedures including routine inspection and preventive maintenance; troubleshooting common blow down system issues; the emergency blow down scenarios and response; and the digital monitoring and control of blow down systems; and the safety and compliance in blow down operations.

PE0190 - Page 1 of 8

During this interactive course, participants will learn the hazard identification and risk assessment for blow down; the blow down system safety and integrity management; the environmental impact of blow down operations; the emergency response and blow down system failures; the legal and regulatory compliance in blow down systems; and the

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

• Apply and gain an in-depth knowledge on blow down system

future trends and innovations in blow down systems.

- Discuss the purpose and importance of blow down systems in petroleum operations
- Explain the principles of pressure and temperature control and identify the types and components of blow down systems
- Review regulatory and industry standards and design criteria for blow down systems
- Carryout blow down valve selection and sizing as well as flare system and knockout drum design
- Recognize process simulation tools, dynamic blow down studies for emergency situations, pressure transients and blow down time calculations and the impact of blow down on process equipment
- Discuss the environmental and safety considerations in blow down design and apply best practices in blow down system engineering
- Employ blow down system start-up and shutdown procedures including routine inspection and preventive maintenance
- Troubleshoot common blow down system issues and apply emergency blow down scenarios and response
- Recognize digital monitoring and control of blow down systems as well as carryout safety and compliance in blow down operations
- Carryout hazard identification and risk assessment for blow down including blow down system safety and integrity management
- Apply environmental impact of blow down operations and emergency response and blow down system failures
- Discuss the legal and regulatory compliance in blow down systems and future trends and innovations in blow down systems

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

The course covers systematic techniques and methodologies on the blow down system for supervisors and managers, boiler operators, maintenance technicians, safety officers, plant engineers, control room operators, environmental compliance officers and new hires/entry-level technicians.

PE0190 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of book.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

PE0190 - Page 3 of 8

Course Instructor

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Distillation Column Operation & Control, Oil Movement Storage & Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, Process Plant Optimization, Revamping & Debottlenecking, Process

Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site Engineering Manager**, **Senior Project Manager**, **Project Engineering Manager**, **Construction Manager**, **Site Manager**, **Area Manager**, **Procurement Manager**, **Factory Manager**, **Technical Services Manager**, **Senior Project Engineer**, **Project Engineer**, **Assistant Project Manager**, **Handover Coordinator** and **Engineering Coordinator** from various international companies such as the **Fluor Daniel**, **KBR** South Africa, **ESKOM**, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, **Worley Parsons**, Lurgi South Africa, **Sasol**, **Foster Wheeler**, **Bosch & Associates**, **BCG** Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a **Bachelor degree** in **Industrial Chemistry** from **The City University** in **London**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

PE0190 - Page 4 of 8

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav '	1

0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Blow Down Systems Purpose and Importance in Petroleum Operations • Differences Between Blow Down and Pressure Relief Systems • Key Components of Blow Down Systems • Role of Blow Down in Process Safety
0930 - 0945	Break
0945 - 1045	Principles of Pressure & Temperature Control Understanding Pressure Build-up in Process Equipment • Thermal Expansion and Gas Dynamics • Effects of Temperature Variations on Blow Down Performance • Pressure-Temperature Relationship in Hydrocarbon Processes
1045 - 1130	<i>Types of Blow Down Systems</i> <i>High-Pressure (HP) and Low-Pressure (LP) Blow Down Systems</i> • <i>Cold Blow Down</i> <i>vs. Hot Blow Down Systems</i> • <i>Manual vs. Automated Blow Down Systems</i> • <i>Blow</i> <i>Down System Variations in Operations</i>
1130 - 1230	Components of a Blow Down System Blow Down Valves and Their Types • Flare Header and Flare Stack • Knockout Drums and Liquid Handling Equipment • Control and Instrumentation for Blow Down Operations
1230 - 1245	Break
1245 - 1330	Regulatory & Industry Standards API 521: Pressure-Relieving and Depressurization Systems • OSHA and Safety Regulations • ISO and ASME Standards for Blow Down Systems • Compliance Requirements in Petroleum Operations
1330 - 1420	<i>Case Studies of Blow Down System Failures</i> Learning from Past Industrial Accidents • Case Study: Piper Alpha Disaster • Blow Down System Design Flaws and Their Consequences • Improving System Reliability Through Lessons Learned
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

PE0190 - Page 5 of 8

Day 2	
	Design Criteria for Blow Down Systems
0730 - 0830	Determining Blow Down Capacity • Considerations for Gas and Liquid Flow in
	Blow Down Systems • Blow Down System Sizing Methodology • Design
	Requirements for Blow Down Systems
	Blow Down Valve Selection & Sizing
0830 - 0930	Types of Blow Down Valves (Ball, Gate, Globe, Quick-Opening) • Valve Cv
	Calculation and Selection Criteria • Actuation Mechanisms (Pneumatic, Hydraulic,
	Electric) • Redundancy and Fail-Safe Design Considerations
0930 - 0945	Break
	Flare System & Knockout Drum Design
0945 – 1100	Role of the Flare System in Blow Down Operations • Knockout Drum Sizing and
0943 - 1100	Liquid Carryover Prevention • Radiation and Dispersion Analysis for Flare Systems
	Integration of Blow Down with Flare and Venting Systems
	Blow Down Dynamics & Simulation
1100 – 1230	Process Simulation Tools (HYSYS, Aspen Plus) • Dynamic Blow Down Studies for
1100 - 1230	Emergency Situations • Pressure Transients and Blow Down Time Calculations •
	Impact of Blow Down on Process Equipment
1230 - 1245	Break
	Environmental & Safety Considerations in Blow Down Design
1245 - 1330	Minimizing Flaring and Emissions Control • Noise and Vibration Analysis for Blow
1245 - 1550	Down Systems • Managing Thermal Stresses in Piping and Equipment • Mitigating
	Risks of Hydrocarbon Releases
	Best Practices in Blow Down System Engineering
1330 – 1420	Guidelines for Best Practices • Common Pitfalls in Blow Down Design • Upgrading
1000 1120	Existing Blow Down Systems for Compliance • Integration of Blow Down with
	Digital Monitoring Systems
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3

Blow Down System Start-Up & Shutdown Procedures
Pre-Operational Checks and Readiness Assessment • Blow Down Activation and
Step-by-Step Operation • Shutdown Procedures and System Resetting • Operator
Responsibilities and Safety Precautions
Routine Inspection & Preventive Maintenance
Maintenance Schedules for Blow Down Valves and Piping • Non-Destructive
Testing (NDT) Techniques • Monitoring and Testing of Flare Components •
Common Causes of Blow Down System Failures
Break
Troubleshooting Common Blow Down System Issues
Valve Malfunctions and Leakage Issues • Blockages and Piping Erosion • Incomplete
Depressurization and Gas Accumulation • Blow Down System Pressure
Fluctuations
Emergency Blow Down Scenarios & Response
Identifying Blow Down System Emergencies • Automatic vs. Manual Blow Down
Activation • Emergency Shutdown (ESD) Integration with Blow Down • Drills and
Training for Blow Down Emergency Response

1230 – 1245	Break
1245 - 1330	Digital Monitoring & Control of Blow Down Systems Role of SCADA and DCS in Blow Down Operations • Remote Monitoring and Automated Blow Down Activation • Using IoT and AI for Predictive Maintenance • Digitalization Initiatives in Blow Down Systems
1330 – 1420	Safety & Compliance in Blow Down Operations Ensuring Compliance with Global Standards • Incident Reporting and Root Cause Analysis • Safety Culture and Human Factors in Blow Down Operations • Training and Competency Requirements for Operators
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

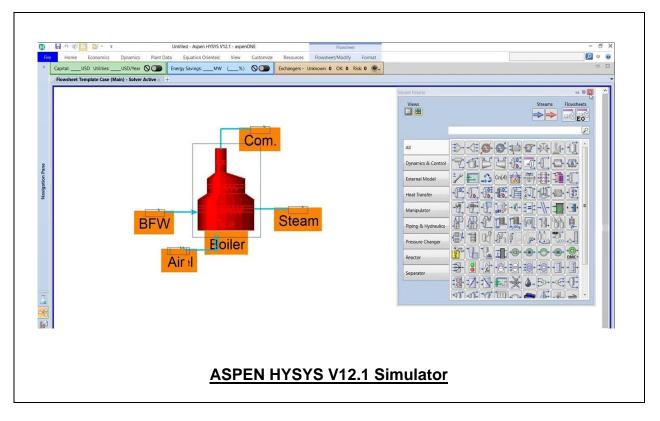
Day 4

<u></u>	
0730 - 0830	Hazard Identification & Risk Assessment for Blow Down HAZID, HAZOP, and LOPA for Blow Down Systems • Risk-Based Inspection (RBI) for Blow Down Components • Identifying High-Risk Areas in Blow Down Operations • Risk Management Framework for Blow Down
0830 - 0930	Blow Down System Safety & Integrity Management Integrity Management Strategies for Blow Down Equipment • Materials Selection for Blow Down Piping and Valves • Corrosion and Erosion Prevention Techniques • Fitness-for-Service (FFS) Assessments
0930 - 0945	Break
0945 - 1100	<i>Environmental Impact of Blow Down Operations</i> Air Quality and Emissions Control Strategies • Reducing Gas Flaring and VOC Emissions • Noise and Thermal Pollution Management • Environmental Compliance Policies
1100 - 1230	<i>Emergency Response & Blow Down System Failures</i> <i>Case Studies of Blow Down Failures and Their Impacts</i> • <i>Developing and Testing</i> <i>Emergency Response Plans</i> • <i>Incident Command System for Blow Down Events</i> • <i>Lessons Learned from Industry Best Practices</i>
1230 - 1245	Break
1245 - 1420	<i>Legal & Regulatory Compliance in Blow Down Systems</i> <i>Regulatory Framework for Blow Down Operations</i> • <i>Compliance with UAE</i> <i>Environmental and Safety Laws</i> • <i>Global Standards (API, OSHA, ISO) and Their</i> <i>Implications</i> • <i>Reporting Requirements and Legal Consequences of Non-Compliance</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 – 0930	<i>Future Trends & Innovations in Blow Down Systems</i> Low-Emission Blow Down Technologies • Advanced Blow Down Valve Designs • Smart Blow Down Systems with AI and Automation • R&D in Sustainable Blow Down Practices
0930 - 0945	Break

PE0190 - Page 7 of 8



	Specific Case Studies in Blow Down Systems
0945 - 1100	Successful Blow Down System Implementations • Lessons from Blow Down System
	Upgrades • Analyzing Blow Down Failures and Improvements • Continuous
	Improvement Strategies in Blow Down
	Benchmarking Blow Down Systems with Global Standards
1100 – 1230	Comparison with Leading Oil & Gas Companies • Implementing Global Best
	Practices in Operations • Strategies for Continuous Improvement • Gap Analysis
	and Performance Enhancement
1200 - 1215	Break
1015 1045	Final Blow Down System Performance Assessment
	Evaluating Participants' Understanding of Key Concepts • Group Discussions on
1215 – 1345	Best Practices • Role-Playing Exercises for Blow Down Operations • Expectations
	for Certified Personnel
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "ASPEN HYSYS" simulator.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0190 - Page 8 of 8

