

COURSE OVERVIEW DE0528 GeoTechnical Survey and Data Analysis

Course Title

GeoTechnical Survey and Data Analysis

Course Date/Venue

- Session 1: April 13-17, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
- Session 2: September 15-19, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

(30 PDHs)

AWAR

Course Reference

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of GeoTechnical Survey and Data Analysis. It covers the scope of geotechnical engineering and the importance of geotechnical surveys in construction; the soil formation processes, soil types and properties and the significance of soil classification in geotechnical analysis; the field exploration techniques and the tools and equipment used in geotechnical survey; the subsurface conditions assessment, geotechnical reporting essentials and laboratory testing of soils; the shear strength testing, soil permeability and hydraulic conductivity; the rock mechanics and classification; and the in-situ testing methods, data acquisition and management.

During this interactive course, participants will learn the soil-structure interaction, slope stability analysis and ground improvement techniques: the seismic geotechnical analysis, foundation design principles and numerical modeling in geotechnical analysis; the geotechnical hazards identification and groundwater and drainage control: pavement subgrade the and embankment design and geotechnical considerations in development; the project integration urban and collaboration, quality assurance in geotechnical surveys and geotechnical survey planning; the data visualization reporting; and the environmental and legal and considerations.

DE0528 - Page 1 of 9

DE0528-04-25-|Rev.00|02 February 2025

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on geotechnical survey and data analysis
- Discuss the scope of geotechnical engineering and the importance of geotechnical surveys in construction
- Identify soil formation processes, soil types and properties and the significance of soil classification in geotechnical analysis
- Apply field exploration techniques and identify the tools and equipment used in geotechnical survey
- Assess subsurface conditions and apply geotechnical reporting essentials and laboratory testing of soils
- Carryout shear strength testing, soil permeability and hydraulic conductivity
- Describe rock mechanics and classification and apply in-situ testing methods, data acquisition and management
- Employ soil-structure interaction, slope stability analysis and ground improvement techniques
- Apply seismic geotechnical analysis, foundation design principles and numerical modeling in geotechnical analysis
- Carryout geotechnical hazards identification and groundwater and drainage control
- Illustrate pavement subgrade and embankment design and identify geotechnical considerations in urban development
- Implement project integration and collaboration, quality assurance in geotechnical surveys and geotechnical survey planning
- Apply data visualization and reporting as well as discuss environmental and legal considerations

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of geotechnical survey and data analysis for geotechnical engineers, civil engineers, environmental engineers, construction managers, surveyors, geologists, students and researchers, project managers and those who involved in or interested in fields related to geotechnical engineering, construction, and environmental science.

DE0528 - Page 2 of 9

DE0528-04-25-|Rev.00|02 February 2025

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

DE0528 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. John Petrus, PhD, MSc, BSc, is a Senior Drilling Engineer & Geologist with over 30 years of onshore & offshore experience within the Oil & Gas, Refinery and Petroleum industries. His wide experience covers in the areas of Production Technology & Engineering, Well Completions, Well Logs, Well Stimulation & Production Logging, Well Completion Design & Operation, Well Surveillance, Well Testing, Well Stimulation & Control and Workover Planning, Horizontal & Multilateral Wells, Completions & Workover, Hole Cleaning & Logging, Drilling & Work-Over Operations, Drill String Design & Drilling Optimization, Wellhead Operations, Maintenance & Testing, Petrophysics/Interpretation of Well Composite, Reservoir & Tubing Performance, Practical Reservoir Engineering, Clastic Exploration & Reservoir Sedimentology, Carbonate Reservoir Characterization &

Modeling, Seismic Interpretation, Mapping & Reservoir Modelling, Reservoir Geology, Integrating Geoscience into Carbonate Reservoir Management, Faulted & Fractured Reservoirs, Fractured Hydrocarbon Reservoirs, Analyses, Characterisation & Modelling of Fractured Reservoirs & Prospects, Fracture Reservoir Modeling Using Petrel, Reservoir Engineering Applied Research, Artificial PVTLift, Artificial Lift System Selection & Design, Fluid Properties & Phase Behavior (PVT), Electrical Submersible Pumps (ESP), Enhance Oil Recovery (EOR), Oil In Place (OIP) Estimation & Range of Uncertainty, Hydraulic Fracturing, Sand Control Techniques, Perforating Methods & Design, Perforating Operations, Petroleum Exploration & Production, Hydrocarbon Exploration & Production, Exploration & Production, Play Assessment & Prospect Evaluation, Formation Evaluation, Petroleum Engineering Practices, Petroleum Hydrogeology & Hydrodynamics, Project Uncertainty, Decision Analysis & Risk Management, Decision Analysis & Uncertainty Management, Exploration & Development Geology, Sedimentology & Sequence Stratigraphy, Structural Interpretation in Exploration & Development, Petrel Geology, Geomodeling, Structural Geology, Applied Structural Geology in Hydrocarbon Exploration, Petrophysics, Geology of the Oil & Gas Field, Geophysics, Geothermal, Geochemical & Geo-Engineering and Drilling Applied Research, Field Geological Outcrop Mapping & Digital Cartography, Geological Modelling, Geoscience Management in E&P, Geoscience Modelling, Geological Mapping, Structural Geology-Tectonics, Structural Analysis, Tectonic Modelling and Numerical Simulation of Fractured Prospects & Reservoirs, Fracture Network Analysis & Modelling, Prospect Generation, Global Networking, Research and Technology Development Management for Fault & Fracture Analyses & Modelling, Fracture Modelling, Dynamic Modelling, Field Development Planning, Water Injection Planning, Stereophotogrammetry, Fault Mapping, GPS Survey, 2D & 3D Seismic Acquisition & Processing, 3D Seismic Surveys & Mapping, 3D GIS, GMAP, Sandbox Modelling, Sedimentological Logging, GR Logging, Surface & Subsurface 3D Modelling, Best Practices Management System (BPMS), Subsurface Work for Energy Projects, Digitalization Projects, Structural Model using Petrel, G&G Seismic & Well Data Modelling, GIS System Management, Database Management, Strategic Planning, Best Practices and Workflow, Quality Management, Project Management and Risk Assessment & Uncertainty Evaluation. Further, he is also well-versed in seismic interpretation, mapping & reservoir modelling tools like Petrel software, LandMark, Seisworks, Geoframe, Zmap and has extensive knowledge in MSDos, Unix, AutoCAD, MAP, Overlay, Quicksurf, 3DStudio, Esri ArcGIS, Visual Lisp, Fortran-77 and Clipper. Moreover, he is a world expert in analysis and modelling of fractured prospects and reservoirs and a specialist and developer of fracture modelling software tools such as FPDM, FMX and DMX Protocols.

During his career life, Dr. Petrus held significant positions and dedication as the Executive Director, Senior Geoscience Advisor, Exploration Manager, Project Manager, Manager, Chief Geologist, Chief of Exploration, Chief of Geoscience, Senior Geosciences Engineer, Drilling Engineer, Reservoir Engineer, Senior Explorationist, Senior Geologist, Geologist, Senior Geoscientist, Geomodeller, Geoscientist, CPR Editor, Resources Auditor, Project Leader, Technical Leader, Team Leader, Scientific Researcher and Senior Instructor/Trainer from various international companies and universities such as the Dragon Oil Holding Plc., ENOC, MENA, ENI Group of Companies, Ocre Geoscience Services (OGS), Burren RPL, Ministry of Oil-Iraq, Eni Corporate University, Standford University, European Universities, European Research Institutes, NorskHydro Oil Company, Oil E&P Companies, just to name a few.

Dr. Petrus has a **PhD** in **Geology** and **Tectonophysics** and **Master's** and **Bachelor's** degree in **Earth Sciences** from the **Utrecht University**, **The Netherlands**. Further, he is a **Certified Instructor/Trainer**, a **Certified Trainer/Assessor/Internal Verifier** by the **Institute of Leadership & Management (ILM**), a Secretary and Treasurer of Board of Directors of Multicultural Centre, Association Steunfonds SSH/SSR and Founding Member of Sfera Association. He has further published several scientific publications, journals, research papers and books and delivered numerous trainings, workshops, courses, seminars and conferences internationally.

DE0528 - Page 4 of 9

DE0528-04-25-|Rev.00|02 February 2025

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 8,000 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav	1
	-

Duyi	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	Introduction to Geotechnical Engineering
	Definition & Scope of Geotechnical Engineering • Importance of Geotechnical
0000 0000	Surveys in Construction • Role of Geotechnical Engineers • Overview of Soil
	& Rock Mechanics
	Basics of Soil Formation & Classification
0000 0045	Soil Formation Processes • Soil Types & Properties • Unified Soil
0900 - 0945	Classification System (USCS) • Significance of Soil Classification in
	Geotechnical Analysis
0945 – 1000	Break
1000 - 1100	Field Exploration Techniques
	Objectives of Geotechnical Site Investigation • Surface Reconnaissance &
	Mapping • Techniques for Sampling (Disturbed & Undisturbed) • Role of
	Boreholes & Test Pits
1100 - 1200	Tools & Equipment Used in Geotechnical Survey
	Borehole Drilling Rigs • Penetrometers & Field Test Equipment • Geophysical
	Survey Tools (Seismic & Resistivity) • GPS & GIS Tools in Geotechnical
	Applications

DE0528 - Page 5 of 9

1200 – 1215	Break
1215 - 1315	Basics of Subsurface Conditions Understanding Groundwater Levels • Soil Stratification & Profiling • Influence of Weathering on Subsurface Materials • Implications of Subsurface Conditions in Design
1315 - 1420	<i>Geotechnical Reporting Essentials</i> Components of a Geotechnical Report • Importance of Preliminary Data Analysis • Visual Representation of Soil Layers (Logs & Profiles) • Common Challenges in Report Preparation
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830	Laboratory Testing of Soils
	Sieve Analysis & Grain Size Distribution • Atterberg Limits (Liquid & Plastic
	Limits) • Compaction Tests (Proctor Test) • Moisture Content Determination
	Shear Strength Testing
0830 - 0945	Triaxial Shear Test • Direct Shear Test • Unconfined Compression Test •
	Interpretation of Shear Strength Results
0945 – 1000	Break
	Soil Permeability & Hydraulic Conductivity
1000 1100	Darcy's Law & its Applications • Permeability Testing Methods (Constant &
1000 - 1100	Falling Head) • Factors Affecting Soil Permeability • Importance of
	Permeability in Foundation Design
	Rock Mechanics & Classification
1100 1200	Rock Mass Characterization (RMR & Q-System) • Uniaxial Compressive
1100 - 1200	Strength of Rocks • Point Load Test for Rock Classification • Fracture & Joint
	Analysis in Rock Masses
1200 - 1215	Break
	In-situ Testing Methods
1215 – 1345	Standard Penetration Test (SPT) • Cone Penetration Test (CPT) • Plate Load
	Test • Pressuremeter Test
	Data Acquisition & Management
1345 - 1420	Tools for Data Logging in Field Tests • Data Quality Control & Assurance •
	Handling Inconsistencies in Collected Data • Archiving Field Data for Future
	Analysis
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

DE0528 - Page 6 of 9

Day 3

0730 - 0830	Soil-Structure Interaction
	Fundamentals of Soil-Structure Interaction • Bearing Capacity & Settlement
	Analysis • Foundation Types & their Behavior • Load Transfer Mechanisms in
	Soil
	Slope Stability Analysis
0830 0045	Factors Influencing Slope Stability • Methods of Slope Stability Assessment
0050 - 0945	(Limit Equilibrium, FEM) • Monitoring Techniques for Slopes • Mitigation
	Measures for Unstable Slopes
0945 – 1000	Break
	Ground Improvement Techniques
1000 1100	Methods of Soil Stabilization (Chemical & Mechanical) • Use of Geosynthetics
1000 - 1100	in Soil Improvement • Preloading & Dewatering Techniques • Vibro-
	Compaction & Stone Columns
	Seismic Geotechnical Analysis
1100 1200	Impact of Earthquakes on Soil & Foundation Systems • Liquefaction Analysis
1100 - 1200	& Mitigation • Dynamic Soil Properties & Response Spectra • Ground
	Motion Amplification in Geotechnical Design
1200 – 1215	Break
	Foundation Design Principles
1015 1045	Shallow Foundations: Footing & Raft Design • Deep Foundations: Pile &
1213 - 1343	Caisson Design • Load & Resistance Factor Design (LRFD) • Effects of
	Lateral & Uplift Loads on Foundations
	Numerical Modeling in Geotechnical Analysis
1245 1420	Introduction to Finite Element Analysis (FEA) • Common Software Tools
1545 - 1420	(PLAXIS, GeoStudio, ABAQUS) • Setting up Numerical Models •
	Calibration & Validation of Models
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

Duy 4	
0730 – 0830	<i>Geotechnical Hazards Identification</i> <i>Common Geotechnical Risks (Landslides, Sinkholes, etc.)</i> • <i>Hazard Assessment</i> <i>Techniques</i> • <i>Early Warning Systems for Geotechnical Risks</i> • <i>Mitigation &</i> <i>Management Strategies</i>
0830 - 0945	Groundwater & Drainage Control Effects of Groundwater on Geotechnical Systems • Drainage Techniques in Construction • Dewatering Methods & Equipment • Groundwater Monitoring During Construction
0945 - 1000	Break
1000 – 1100	Pavement Subgrade & Embankment DesignCharacteristics of a Good Subgrade • CBR (California Bearing Ratio) Testing• Embankment Stability & Settlement • Role of Geosynthetics in PavementDesign
1100 – 1200	<i>Geotechnical Considerations in Urban Development</i> <i>Challenges in Urban Geotechnical Projects</i> • <i>Impact of Underground Utilities</i> <i>on Soil Properties</i> • <i>Urban Excavation & Tunneling Challenges</i> • <i>Case</i> <i>Studies of Urban Geotechnical Failures</i>

DE0528 - Page 7 of 9

AWS

UKAS

1200 – 1215	Break
1215 - 1345	Project Integration & Collaboration
	Communication Between Geotechnical & Structural Teams • Importance of
	Geotechnical Input in Project Planning • Addressing Geotechnical Challenges
	in Multidisciplinary Projects • Case Studies on Collaborative Problem-Solving
	Quality Assurance in Geotechnical Surveys
1345 - 1420	Standards & Codes in Geotechnical Investigations • Ensuring Consistency in
	Field & Lab Results • Peer Review & Validation Processes • Importance of
	Ethical Practices in Geotechnical Projects
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 - 0830	Geotechnical Survey Planning
	Site Selection Criteria for Investigations • Budgeting & Resource Allocation
	for Surveys • Scheduling & Logistics for Geotechnical Surveys • Risk
	Management in Survey Planning
	Case Studies of Geotechnical Failures
0830 - 0945	Analysis of Well-Known Failures (e.g., Dam Collapses, Slope Failures) •
	Lessons Learned from Geotechnical Disasters • Preventative Measures for
	<i>Future Projects</i> • <i>Role of Monitoring in Early Failure Detection</i>
0945 - 1000	Break
	Data Visualization & Reporting
1000 1100	Tools for Geotechnical Data Visualization (e.g., GIS, AutoCAD) • Creating
1000 - 1100	Soil Profiles & Cross-Sections • Interpreting & Presenting Data to
	Stakeholders • Effective Use of Charts & Graphs in Reporting
	Environmental & Legal Considerations
1100 1200	Environmental Impact of Geotechnical Activities • Regulations Governing
1100 - 1200	Geotechnical Projects • Sustainable Practices in Geotechnical Engineering •
	Permitting & Compliance Requirements
1200 - 1215	Break
1215 - 1315	Future Trends in Geotechnical Engineering
	Role of AI & Machine Learning in Data Analysis • Advances in Geotechnical
	Monitoring Tools • Use of Remote Sensing in Subsurface Investigations •
	Emerging Techniques in Soil & Rock Testing
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

DE0528 - Page 8 of 9

<u>Practical Sessions</u> This practical highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE0528 - Page 9 of 9

