

COURSE OVERVIEW IE0311 Instrumented Protective Functions

<u>Course Title</u> Instrumented Protective Functions

Course Date/Venue

- Session 1: June 15-19, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
- Session 2: November 10-14, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

AWA

Course Reference

IE0311

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Safety Instrumented Function Conceptual. It covers the safety instrumented systems (SIS) and the importance of SIS in process industries; the difference between SIS and basic process control systems (BPCS); the safety lifecycle phases, safety instrumented function (SIF), safety integrity level (SIL) and risk reduction factor; the hazard identification methods, risk assessment and layers of protection analysis (LOPA); the basic concepts of redundancy and the types of redundant architectures; the levels and significance of SIL, SIL determination methods and SIL verification; and the failure modes of instrumentation, hardware fault tolerance and software considerations.

During this interactive course, participants will learn the key design principles of SIF and the common cause failures; the safety instrumented equipment, SIS logic solvers and field devices in SIF; testing and validating SIF and methods and frequency of testing; the proper documentation and testing and verification best practices for safe commissioning and planning; the execution of proof testing and periodic inspection; the functional safety management and competency in operation and maintenance; the change management, failure reporting and analysis; and the human factors in SIS, auditing and assessing SIS health and measuring and monitoring SIS performance.

IE0311 - Page 1 of 8

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on safety instrumented function conceptual
- Discuss safety instrumented systems (SIS) and the importance of SIS in process industries
- Identify the difference between SIS and basic process control systems (BPCS)
- Illustrate safety lifecycle phases and define safety instrumented function (SIF), safety integrity level (SIL) and risk reduction factor
- Carryout hazard identification methods, risk assessment and layers of protection analysis (LOPA)
- Recognize the basic concepts of redundancy and the types of redundant architectures
- Discuss the levels and significance of SIL and apply SIL determination methods and SIL verification
- Identify failure modes of instrumentation, hardware fault tolerance and software considerations
- Identify the key design principles of SIF and avoid common cause failures
- Select safety instrumented equipment and recognize SIS logic solvers and field devices in SIF
- Test and validate SIF, apply methods and frequency of testing and perform proper documentation
- Apply testing and verification best practices for safe commissioning as well as planning and execution of proof testing and periodic inspection
- Employ functional safety management and ensure competency in operation and maintenance
- Carryout change management, failure reporting and analysis and the emerging technologies in SIS
- Recognize the human factors in SIS, audit and assess SIS health and measure and monitor SIS performance

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of safety instrumented function conceptual for instrumentation engineers, control engineers, process engineers and process safety engineers.

IE0311 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

IE0311 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Attalla Ersan, PEng, MSc, BSc, is a Senior Engineer with over 35 years of extensive experience within the Oil & Gas, Hydrocarbon and Petrochemical industries. His expertise widely covers the areas of Process Analyzer & Analytic Instrumentation, Process Control, Instrumentation, Troubleshooting & Problem Solving, Process Plant Operations, Process Plant Startup & Operating Procedure, Control Room Emergency Response, SIL Criteria, Calibration & Configuration

of Installed Instrumentation, PLC & DCS, Bearing Replacement, Control Valves, Emergency Response Planning, Boiler & Steam System Management, Process Control Design & Plant Modelling, Process Instrumentation & Automation, Process Control Instrumentation, Analyzer Measurement Systems, Pressure Management and Selection & Sizing of all Instrumentation. Further, he is also well-versed in Permit to Work System, Power Transformers, Power System Analysis, Power Supply Substations, Electric Power System Operation, Fundamentals of Power System Equipment, Power System Stability, Power System Harmonics Analysis, Mitigation & Solution Strategies, Power System, Generation & Distribution, AC & DC Motors, Substations, Switchgears & Distribution, Electro-mechanical Protection Relays, Engineering Drawings, Industrial Power System Coordination, Distributed Control System (DCS), Honeywell TDS 3000 DCS, Liquid and Gas Flowmetering, Meter Calibration, Hazard and Operability (HAZOP) Study, Process Hazards Analysis (PHA), HAZOP Facilitation, Loss Prevention, Consequence Analysis Application, Gas Operation, Accident/Incident Investigation (Why Tree Detectors Method). Occupational Exposure Assessment, Fire Fighting & First Aid, Environmental Management and Basic Safety Awareness. Project Management, Human Resources Consultancy, Manpower Planning, Job Design & Evaluation, Recruitment, Training & Development and Leadership, Creative Problem-Solving Skills, Work Ethic, Job Analysis Evaluation, Training & Development Needs, Bidding & Tendering, Technical Report Writing, Supervisory Leadership, Effective Communication Skills and Total Quality Management (TQM). He is currently the CEO of Ersan Petrokimya Teknoloji Company Limited wherein he is responsible for the design and operation of Biogas Process Plants.

During his career life, Mr. Ersan has gained his practical and field experience through his various significant positions and dedication as the **Policy**, **Organization & Manpower Development Head**, **Training & Development**, **Head**, **Ethylene Plant – Pyrolysis Furnace Engineer**, **Production Engineer**, Process Training Coordinator, Ethylene Plant Shift Supervisor, Ethylene Plant Panel & Fit Operator, Process Training & Development Coordinator, **Technical Consultant**, and **Instructor/Trainer** for Qatar Vinyl Company Limited and Qatar Petroleum Company (QAPCO).

Mr. Ersan is a **Registered Professional Engineer** and has a **Master's degree** of **Education** in **Educational Training & Leadership** and a **Bachelor's degree** of **Petrochemical Engineering**. Further, he is a **Certified Instructor/Trainer** and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

IE0311 - Page 4 of 8

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day I	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 – 0830	PRE-TEST
	Introduction to Safety Instrumented Systems (SIS)
0830 - 0930	Background and History • Importance of SIS in Process Industries • Difference
	Between SIS and Basic Process Control Systems (BPCS)
0930 - 0945	Break
0045 1030	Safety Lifecycle Overview
0945 - 1050	Definition and Importance • Safety Lifecycle Phases
	Key Terminologies
1030 – 1130	Safety Instrumented Function (SIF) • Safety Integrity Level (SIL) • Risk
	Reduction Factor
1130 1215	Hazards & Risks
1150 - 1215	Hazard Identification Methods • Risk Assessment and its Significance
1215 – 1230	Break
1230 - 1330	Layers of Protection Analysis (LOPA)
	Basics of LOPA • Application in Determining SIL Requirements
1330 – 1420	Importance of Redundancy
	Basic Concepts • Types of Redundant Architectures
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

Day 1

IE0311 - Page 5 of 8

Day 2

0730 - 0830	SIL
	Definition and Importance • Levels and their Significance
0830 - 0930	SIL Determination
	Methods for SIL Determination • Risk Matrix and Risk Graph Methodologies
0930 - 0945	Break
0945 - 1100	SIL Verification
	Verifying SIL Meets Requirements • Calculating Probability of Failure on
	Demand (PFD)
1100 1215	Failure Modes of Instrumentation
1100 - 1213	Safe Failure and Dangerous Failure • Fail-Safe Concepts
1215 – 1230	Break
1000 1000	Hardware Fault Tolerance
1230 - 1330	<i>Definition and Importance</i> • <i>Common Architectures in SIS (1001, 1002, 2003, etc.)</i>
1330 – 1420	Software Considerations in SIS
	Software Lifecycle • Challenges in Software Design and Validation
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 - 0830	Key Design Principles
	Simplicity in Design • Avoiding Common Cause Failures
0830 - 0930	Selecting Safety Instrumented Equipment
	Certified versus Prior-Use Equipment • Equipment Lifecycle Considerations
0930 - 0945	Break
0945 – 1100	SIS Logic Solvers
	Functionality and Application • Hardware versus Software-Based Solvers
1100 1015	Field Devices in SIF
1100 – 1215	Sensors and Final Elements • Proper Device Selection Criteria
1215 – 1230	Break
1220 1220	SIF Testing & Validation
1230 - 1330	Importance of Testing and Validation • Methods and Frequency of Testing
1330 – 1420	Documentation & Traceability
	Importance of Proper Documentation • Requirements and Best Practices
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 - 0830	<i>SIF Commissioning</i> Best Practices for Safe Commissioning • Testing and Verification During Commissioning
0830 - 0930	Proof Testing & Periodic Inspection Definition and Importance • Planning and Execution
0930 - 0945	Break

IE0311 - Page 6 of 8

0945 – 1100	<i>Functional Safety Management</i> Role of Functional Safety Management in SIS • Key Components and Practices
1100 – 1215	Training & Competency Importance in SIS Lifecycle • Ensuring Competency in Operation and Maintenance
1215 – 1230	Break
1230 – 1330	<i>Change Management</i> <i>Importance of Managing Changes</i> • <i>Impact of Changes on SIF and Overall SIS</i>
1330 - 1420	Failure Reporting & AnalysisRole of Failure Data • Methods for Capturing and Analyzing Failures
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

<u>_ </u>	
0730 - 0830	Emerging Technologies in SIS
	<i>Impact of IIoT and Industry 4.0 on SIS</i> • <i>Cybersecurity in SIS</i>
0830 - 0930	Human Factors in SIS
	Influence of Human Error • Designing with Human Factors in Mind
0930 - 0945	Break
0945 – 1100	Auditing & Assessment of SIS
	Role of Audits in Ensuring SIS Health • Key Components of an Effective Audit
1100 1230	Safety Performance Indicators
1100 – 1230	Measuring and Monitoring SIS Performance • Role in Continuous Improvement
1230 – 1245	Break
	Case Studies
1245 - 1345	<i>Real-life Incidents and Lessons Learned</i> • <i>Discussion on How Incidents could have</i>
	been Prevented
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

IE0311 - Page 7 of 8

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Safety Automation Builder Software (Rockwell Automation)" simulator.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

