

COURSE OVERVIEW SE0080

Onshore Foundation Construction Design

o CEUs

30 PDHs)

Course Title

Onshore Foundation Construction Design

Course Date/Venue

Session 1: June 22-26, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE Session 2: November 17-21, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

SE0080

Course Duration/Credits

Five days/3.0 CEUs/30.0 PDHs

Course Description

This practical and highly-interactive course includes practical sessions where participants will visit steel structures. Practical sessions will be performed in order to apply the theory learnt in the class.

This course is designed to provide delegates with a detailed and up-to-date overview of steel structure design, construction, inspection, maintenance & durability. It covers the proper use of techniques and procedures on design, inspection, maintenance and durability of steel structures; the properties of steel and the tension members; the various types of structural fasteners and emphasize the common welding processes used in steel structures; the scope of the compression members and explain the features and functions of laterally supported beams.

The course will also cover the torsion, lateral-torsional buckling of beams, continuous beams and plate girders and employ their practical application in steel structures; the types of connections used in steel structures and differentiate braced and unbraced frames; the methodological practical applications on structural steel and bolting inspection. Moreover, it will assist the delegates to execute the maintenance procedures of steel structures and emphasize the sustainability of steel-framed buildings and the different approaches used in maintaining the durability of steel structures.

SE0080 - Page 1 of 9

SE0080-06-25|Rev.68|28 January 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply proper techniques and procedures on the design, construction, inspection, maintenance and durability of steel structures
- Identify the properties of steel and the tension members
- Enumerate the various types of structural fasteners and emphasize the common welding processes used in steel structures
- Recognize the scope of the compression members and explain the features and functions of laterally supported beams
- Discuss torsion, lateral-torsional buckling of beams, continuous beams and plate girders and employ their practical application in steel structures
- Determine the types of connections used in steel structures and differentiate braced and unbraced frames
- Implement the methodological practical applications on structural steel and bolting inspection
- Carryout the maintenance procedures of steel structures and emphasize the sustainability of steel-framed buildings
- Employ the different approaches used in maintaining the durability of steel structures

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course covers systematic techniques and methodologies on steel structure design, construction, inspection, maintenance and durability for civil engineers, mechanical engineers, structural engineers, architects, contractors, managers, maintenance managers and inspection engineers.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

SE0080 - Page 2 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accredited The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

SE0080 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Luis Manuel is a Senior Structural Engineer with over 25 years of extensive experience in the Oil & Gas Industry. He is an Expert in the areas of Structural Analysis & Design, Dvnamic Analysis Reinforced Concrete Structure. Engineering Drawings, Standards & Codes. Naval Architecture, Stress Analysis, Underwater Inspection & Maintenance. Assessment Engineering, Regulatory

Compliance Inspections, and Finite Element Analysis.

Presently, Mr. Manuel is the **Technical Advisor** and **Senior Structural Engineer** of a leading **engineering consultancy company**, where he leads in all **Structural Engineering** related operations, **coordinates structural activities** for **platform modifications**, mobilizes the **preparation of detailed drawings**, the **construction work scope**, the **development of structural material take-off reports**, **analyses reports**, **structural details** and **welding details**, **carry out advanced assessment analyses of existing structures** and **special fatigue investigations**. He had also been heavily involved in the **development of instruction materials** as authorized by **EDI (Engineering Dynamic Incorporated)** and the training of engineers on the **SACS** software (**Structural Analysis Computer System**). He had gained his expertise & thorough practical experience through his stint with numerous **international organizations** including **Chevron**, **ExxonMobil**, **W.S.Atkins**, **MSL**, **Atlas Engineering**, **Heerema**, the **US Navy**, **Ingalls**, **Textron** and **Barnett & Casbarian**.

During his long career life, Mr. Manuel has accomplished many challenging assignments such as performing linear elastic SACS® analyses for the strength, seismic and fatigue assessment of various platforms; the supervision of the data recording for underwater inspection by ROV; generating topside structural inspections of existing platforms to document structural deficiencies and corrosion impingement; designed and produced fabrication drawings for updating and rehabilitating an existing platform; performed analysis and developed construction drawings; provided the design and installation/rigging drawings for the transportation of modules; supplying reinforcement analysis for helidecks slated for relocation and their corresponding reuse offshore; managing the **design** of **transportation cradle** and lifting sling for the installation of jacket structures; producing designs on various green field structures such as tripods and 4-leg platforms; creating the deck analysis and design of an overhead crane rail system; preparing the fabrication drawings for the strengthening and the modification of an international barge and drafting out the structural repairs of a cruise ship.

Mr. Manuel has a **Bachelor** degree in **Mechanical Engineering** from the **State University of New York**. Further, he is a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)**, a **Certified Instructor/Trainer** and the **author** of the book "Offshore Platforms **Design**" and the "SACS Software Training Module".

SE0080 - Page 4 of 9

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course Instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1

Duyi	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Steel StructuresStructural DesignPrinciples of DesignHistorical Background of SteelStructuresLoadsTypes of Structural Steel MembersSteel StructuresSpecifications and Building CodesPhilosophies of DesignFactors ofSafetyASD and LRFD ComparedWhy Should LRFD be Used?Analysis of the Structure
0930 - 0945	Break
0945 – 1200	Steels and PropertiesStructural SteelsFastener SteelsWeld Electrode and Filler MaterialStress-StrainBehavior (Tension Test) at Atmospheric TemperaturesMaterial ToughnessYield Strength for Multiaxial States of StressHighTemperature BehaviorCold Work and Strain Hardening•Lamellar Tearing••Fatigue Strength•Weathering Steels
1200 - 1215	Break
1215 - 1330	Tension MembersNominal Strength• Net Area• Effect of Staggered Holes and Net AreaEffective Net Area• Tearing Failure at Bolt Holes• Stiffness as a DesignCriterion• Load Transfer at Connections• Load and Resistance FactorDesign- Tension members• Tension Rods• Allowable Stress Design-Tension Members

	Structural Fasteners
1330 – 1420	<i>Types of Fasteners</i> • <i>Historical Background of High-Strength Bolts</i> • <i>Causes</i>
	of Rivet Obsolescence • Details of High-Strength Bolts • Installation
	Procedures • Nominal Strength of Individual Fasteners • Load and
	Resistance Factor Design – Fasteners • Examples – Tension Member Bearing-
	Type Connections – LRFD • Slip-Critical Joints • Allowable Stress Design –
	Fasteners • Examples – Tension Members Using Allowable Stress Design •
	Eccentric Shear • Fasteners acting in Axial Tension • Combined Shear and
	Tension • Shear and Tension from eccentric Loading
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

<u> </u>	
0730 - 0900	WeldingBasic Processes • Weldability of Structural Steel • Types of Joints • Types ofWelds • Welding Symbols • Factors Affecting the Quality of WeldedConnections • Possible Defects in Welds • Inspection and Control •Economics of Welded Built-Up Members and Connections • Size and LengthLimitations for Fillet Welds • Effective Areas of Welds • Nominal Strength ofWelds • Load and Resistance Factor Design - Welds • Allowable StressDesign - Welds • Welds Connecting Members Subject to Direct Axial Load •Eccentric Shear Connections - Strength Analysis • Eccentric ShearConnections - Elastic (Vector) Analysis • Loads Applied Eccentric to the Planeof Welds
0900 - 0915	Break
0915 - 1100	Compression MembersBasic Column StrengthInelastic BucklingResidual StressDevelopment of Column Strength Curves Including Residual StressStructural Stability Research Council (SSRC) Strength CurvesLoad andResistance Factor DesignEffective LengthLoad and Resistance FactorDesign of Rolled Shapes (W.S. and M) Subject to Axial Compression•Allowable Stress Design•Shear Effect• Design of Latticed MembersStrength of Plates under Uniform Edge Compression• AISC Width/ThicknessLimits λ_r to Achieve Yield Stress Without Local Plate Buckling• AISCWidth/Thickness Limits λ_p to Achieve Significant Plastic Deformation• AISCProvisions to Account for the Buckling and Post-Buckling Strengths of PlateElementsElements• Design of Compression Members as Affected by Local BucklingProvisions• Compression Members as Affected by Local Buckling
1100 - 1230	Beams: Laterally SupportedSimple Bending of Symmetrical Shapes• Behavior of Laterally Stable BeamsLaterally Supported Beams – Load and Resistance Factor Design• LaterallySupported Beams – Allowable Stress Design• Serviceability of Beams• Shearon Rolled Beams• Concentrated Loads Applied to Rolled Beams• Holes inBeams• General Flexural Theory• Biaxial Bending of Symmetric Sections
1230 – 1245	Break

SE0080 - Page 6 of 9

	Torsion
1245 – 1420	Pure Torsion of Homogeneous Sections • Shear Stresses Due to Bending of
	Thin-Wall Open Cross-Sections • Shear Center • Torsional Stresses in I-
	Shaped Steel Sections • Analogy Between Torsion and Plane Bending •
	Practical Situations of Torsional Loading • Load and Resistance Factor Design
	for Torsion – Laterally Stable Beams • Allowable Stress Design for Torsion –
	Laterally Stable Beams • Torsion in Closed Thin-Wall Sections • Torsion in
	Sections with Open and Closed Parts • Torsional Buckling
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

Duy 5	
	Lateral-Torsional Buckling of Beams
0720 0000	Rational Analogy to Pure Columns • Lateral Support • Strength of I-Shape
	Beams Under Uniform Moment • Elastic Lateral-Torsional Buckling •
0750 - 0900	Inelastic Lateral-Torsional Buckling • Load and Resistance Factor Design – I
	Shaped Beams Subjected to Strong-Axis Bending • Allowable Stress Design –
	I-Shaped Beams Subjected to Strong-Axis Bending
0900 - 0915	Break
	Lateral-Torsional Buckling of Beams (cont'd)
	Effective Laterally Unbraced Length • Examples: Load and Resistance Factor
0015 1100	Design • Examples: Allowable Stress Design • Weak-Axis Bending of I-
0915 - 1100	Shaped Sections • Lateral Buckling of Channels, Zees, Monosymmetric I-
	Shaped Sections and Tees • Lateral Bracing Design • Biaxial Bending of
	Doubly Symmetric I-Shaped Sections
	Continuous Beams
	Plastic Strength of a Statically Indeterminate Beam • Plastic Analysis – Load
1100 – 1230	and Resistance Factor Design Examples • Elastic Analysis - Load and
	Resistance Factor Design Examples • Elastic Analysis - Allowable Stress
	Design Examples • Splices
1230 - 1245	Break
	Plate Girders
	Difference Between Beam and Plate Girder • Vertical Flange Buckling Limit
	State • Nominal Moment Strength – load and Resistance Factor Design •
	Moment Strength – Allowable Stress Design • Moment Strength Reduction
	Due to Bend-Buckling of the Web • Nominal Moment Strength - Hybrid
1245 – 1420	Girders • Nominal Shear Strength – Elastic and Inelastic Buckling • Nominal
	Shear Strength – Including Tension-Field Action • Strength in Combined
	Bending and Shear • Intermediate Transverse Stiffeners • Bearing Stiffener
	Design • Longitudinal Web Stiffeners • Proportioning the Section • Plate
	Girder Design
	Example – LRFD
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

SE0080 - Page 7 of 9

0730 - 0900	Connections
	<i>Types of Connections</i> • <i>Simple Shear Connections</i> • <i>Seated Beam Connections</i>
	– Unstiffened • Stiffened Seat Connections • Triangular Bracket Plates
0900 - 0915	Break
0915 - 1100	Connections (cont'd)
	Continuous Beam-To-Column Connections • Continuous Beam-To-Beam
	Connections • Rigid-Frame Knees • Column Base Plates • Beam Splices
	Frames-Braced and Unbraced
1100 1220	Elastic Buckling of Frames • General Procedures for Effective Length •
1100 - 1230	Stability of Frames under Primary Bending Moments • Bracing Requirements
	- Braced Frames • Overall Stability When Plastic Hinges Form
1230 – 1245	Break
1245 - 1420	Structural Steel and Bolting Inspection
	International Building Code Provisions • Structural Steels • Fabricated Steel
	Steel Erection Approved Fabricators High-Strength Bolting
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

	Maintenance of Steel Structures
0730 – 0900	Maintenance Plan • Bridge Diagnosis Technology • Monitoring •
	Retrofitting
0900 - 0915	Break
	Sustainability of Steel-Framed Buildings
0915 – 1100	Steel Construction Sustainability • Sustainability and Construction •
	Sustainability and Steel Construction • Specification of Key Issues
	Durability of Steel Structures
1100 1220	Listing of Deterioration Mechanisms and Effects • Approaches to Design for
1100 - 1230	Service Life • Probabilistic Approach to Service Life Design • Redundancy
	and Over Design
1230 – 1245	Break
	Durability of Steel Structures (cont'd)
1245 – 1345	Maintenance Strategies • Life Cycle Cost • Environmental Life Cycle
	Assessment
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

SE0080 - Page 8 of 9

Practical Sessions/Site Visit

Site visit will be organized during the course for delegates to practice the theory learnt:-

<u>Course Coordinator</u> Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

SE0080 - Page 9 of 9

SE0080-06-25|Rev.68|28 January 2025