

COURSE OVERVIEW SE0037 Pipe and Equipment Foundations Design

Course Title

Pipe and Equipment Foundations Design

Course Date/Venue

Session 1: June 29-July 03, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

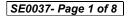
Session 2: November 24-28/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel. Abu Dhabi. UAE

SE0037


Course Duration/Credits

Five days/3.0 CEUs/30.0 PDHs

Course Description



This course is designed to provide participants with a detailed and up-to-date overview of the foundation design for dynamic equipment. It covers the machine types, foundation types and the associated interfaces with piping, cable trays, pipe racks and conveyor systems; the design criteria, static loads, soil mechanics and laboratory and site test for soil samples; the liquefaction and vibration related soil problems; the design of foundations on non-cohesive and cohesive soils: the soil improvement methods, dynamic loads, SDOF systems and MDOF systems; and the free vibration, forced vibration and the response of industrial structures subjected to dynamic loads.

Further, this course will also discuss the earthquake loads, impact loads and machine induced dynamic the equipment structure interaction. loads: modelling and analysis and code provisions including the EQ resistant design of industrial structures; the equipment structure interaction under earthquake loads; and the seismic loads on industrial structures and structural dynamics.

During this interactive course, participants will learn the earthquake resistant design methods, forced based design, displacement-based design and earthquake resistant design methods; the code provisions on EQ resistant design including equipment bearings and seismic isolators against EQ actions; designig base isolators for equipment, vibration bearings for equipment and steel industrial structures; the steel connections in industrial structures, design of steel and concrete industrial structures; the modelling and analysis of EQ resistant steel and concrete industrial structure; the seismic design of non-structural components in industrial plants including the seismic analysis and design of industrial racks, fire sprinkler system, suspended ceilings, electrical equipment and plumbing; the code provisions on EQ resistant steel and concrete structures including the EQ resistant design of non-structural components; and the limitations of computer aided engineering software.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a fundamental knowledge of dynamic equipment design
- Identify machine types, foundation types and the associated interfaces with piping, cable trays, pipe racks and conveyor systems
- Recognize design criteria, static loads, soil mechanics and laboratory and site test for soil samples
- Interpret liquefaction and vibration related soil problems and Illustrate the design of foundations on non-cohesive and cohesive soils
- Carryout soil improvement methods, dynamic loads, SDOF systems and MDOF systems
- Determine free vibration, forced vibration and the response of industrial structures subjected to dynamic loads
- Recognize the earthquake loads, impact loads and machine induced dynamic loads
- Illustrate equipment structure interaction, modelling and analysis and code provisions including the EQ resistant design of industrial structures
- Discuss the equipment structure interaction under earthquake loads as well as seismic loads on industrial structures and structural dynamics
- Employ earthquake resistant design methods, forced based design, displacement-based design and earthquake resistant design methods
- Describe the code provisions on EQ resistant design including equipment bearings and seismic isolators against EQ actions
- Design base isolators for equipment, vibration bearings for equipment and steel industrial structures
- Illustrate steel connections in industrial structures, design of steel and concrete industrial structures as well as the modelling and analysis of EQ resistant steel and concrete industrial structure
- Describe seismic design of non-structural components in industrial plants including the seismic analysis and design of industrial racks, fire sprinkler system, suspended ceilings, electrical equipment and plumbing
- Discuss the code provisions on EQ resistant steel and concrete structures including the EQ resistant design of non-structural components and the limitations of computer aided engineering software

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of foundation design for dynamic equipment for engineers and other technical staff.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Steve Magalios, CEng. PGDip (on-going), MSc, BSc, is a Senior Civil Engineer with almost 40 years of extensive On-shore & Offshore experience in the Oil & Gas. Construction, Refinery and Petrochemical industries. His expertise widely covers in the areas of Blast Simulation. Blast Resistant & Resilient Design. Building Life Assessment & Retrofit Solutions for Blast Resistance, Seismicity Modelling, Seismic Design for Buildings, Advanced Seismic & Wind Design of Reinforced Concrete, Industrial Building Design, Blast Resistance & Resilient for Oil & Gas Field, Concrete Structures & Building Rehabilitation, Reinforced Concrete Structures Protection, Concrete Structure Inspection & Repair, Concrete Inspection & Maintenance, Concrete

Maintenance & Reliability Analysis, Design and Behaviour of Steel Structures, Advanced Steel Design & Stability of Structures Concrete Structural Design, Dynamic Analysis of Rotating Equipment Foundations & Structural Steel Piperacks, Concrete Technology, Construction Planning, Construction & Concrete Works Maintenance, Advanced Building Construction Technology, Geosynthetics & Ground Improvement Methods, Bench Design, Benching, Land Survey and ArcGIS for Earthworks & Management, ArcGIS for Surveying, Computer Aided Design (CAD), AutoCAD Civil 3D, GIS & Mapping, Structural Analysis & Design (STAAD PRO), Land Surveying & Property Evaluation, Earth Measurements, Earthwork & Structural Maintenance, System Safety Program Plan (SSPP) Inspection, Building & Road Design Skills, Civil Engineering Design, Structural Reliability Engineering, Road Construction & Maintenance, Road Pavement Design, Road Maintenance, Drainage System Operations & Maintenance, Blueprint Reading & Interpretation, Blue Print Documentation, Mechanical Drawings, P&ID, Flow Diagram Symbols, Cartographic Representation, Soil Classification, Cadastral Surveying & Boundary Definition, Project Engineering & Design, Construction Management, Project Planning & Execution, Site Management, Site Supervision, Effective Resource Management, Project Evaluation, FEED Management, EPC Projects Design, Project Completion & Workover, Quality Control and Team Management. He is also well-versed in Pipeline Operation & Maintenance, Pipeline Design & Construction, Pipeline Engineering, Scraper Traps, Burn Pits, Risk Assessment, HSE Plan & Procedures, Construction Planning, Methods & Management, Sloping, Embankments, Construction Planning, Construction Quality Management, Project Risk Assessment, Project Quality Plans, Excavation, Backfill & Compaction, Excavation & Reinstatement, Excavation Safety for Construction, Groundworks Supervision, Construction Quality Remote Sensing, Construction Materials, Construction Surveying, Detailed Engineering Drawings, Codes & Standards Quality Plan & Procedures, Safety & Compliance Management, Permit-to-Work Issuer, ASME, API, ANSI, ASTM, BS, NACE, ARAMCO & KOC Standards, MS Office tools, AutoCAD, STAAD-PRO, GIS, ArcInfo, ArcView, Autodesk Map and various programming languages and software such as SHOTPlus, FORTRAN, BASIC and AUTOLISP. Currently, he is the Chartered Professional Surveyor Engineer & Urban-Regional Planner wherein he is deeply involved in providing exact data, measurements and determining properly boundaries. He is also responsible in preparing and maintaining sketches, maps, reports and legal description of surveys.

During his career, Mr. Magalios has gained his expertise and thorough practical experience through challenging positions such as a Project Site Construction Manager, Construction Site Manager, Project Manager, Deputy PMS Manager, Head of the Public Project Inspection Field Team, Technical Consultant, Senior Consultant, Consultant/Lecturer, Construction Team Leader, Lead Pipeline Engineer, Project Construction Lead Supervising Engineer, Civil Engineer, Lead Site Engineer, Senior Site Engineer Lead Engineer, Senior Site Engineer, R.O.W. Coordinator, Site Representative, Supervision Head and Contractor for international Companies such as the Penspen International Limited, Eptista Servicios de Ingeneria S.I., J/V ILF Pantec TH. Papaioannou & Co. - Emenergy Engineering, J/V Karaylannis S.A. – Intracom Constructions S.A., Ergaz Ltd., Alkyonis 7, Palaeo Faliro, Piraeus, Elpet Valkaniki S.A., Asprofos S.A., J/V Depa S.A. just to name a few.

Mr. Magalios is a Registered Chartered Engineer and has a Master's and Bachelor's degree in Surveying Engineering from the University of New Brunswick, Canada and the National Technical University of Athens, Greece, respectively. Further, he is currently enrolled for Post-graduate in Quality Assurance from the Hellenic Open University, Greece. He has further obtained a Level 4B Certificates in Project Management from the National & Kapodistrian University of Athens, Greece and Environmental Auditing from the Environmental Auditors Registration Association (EARA). Moreover, he is a Certified Instructor/Trainer, a Chartered Engineer of Technical Chamber of Greece and has delivered numerous trainings, workshops, seminars, courses and conferences internationally.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 -0900	Introduction to Dynamic Equipment Foundation Design
0900 - 0930	Machine Types & Foundation Types
0930 - 0945	Break
0945 - 1015	Associated Interfaces with Piping, Cable Trays, Pipe Racks, Conveyor
	Systems
1015 - 1045	Design Criteria & Static Loads
1045 - 1115	Introduction to Soil Mechanics
1115 - 1145	Laboratory Tests for Soil Samples
1145 - 1215	Site Test for Soil Samples
1215 - 1230	Liquefaction & Vibration Related Soil Problems
1230 - 1245	Break
1245 - 1335	Design of Foundations on Non-Cohesive Soils
1335 - 1420	Design of Foundations on Cohesive Soils
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

0730 - 0810	Soil Improvement Methods
0810 - 0850	Dynamic Loads & SDOF Systems
0850 - 0930	MDOF Systems
0930 - 0945	Break
0945 - 1015	Free Vibration
1015 - 1045	Forced Vibration
1045 - 1115	Response of Industrial Structures Subjected to Dynamic Loads
1115 - 1145	Earthquake Loads
1145 - 1230	Impact Loads
1230 - 1245	Break
1245 - 1335	Machine Induced Dynamic Loads
1335 - 1420	Response of Industrial Structures to Dynamic Loads
1420 - 1430	Recap
1430	Lunch & End of Day Two

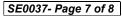
Day 3

0730 - 0810	Equipment Structure Interaction
0810 - 0850	Modelling & Analysis
0850 - 0930	Code Provisions
0930 - 0945	Break
0945 - 1015	Introduction to EQ Resistant Design of Industrial Structures

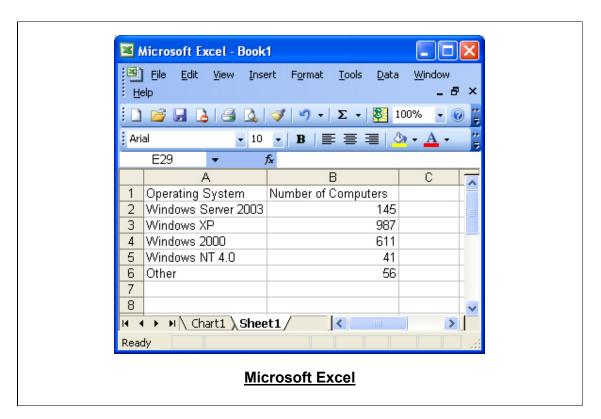
1015 - 1045	Equipment Structure Interaction Under Earthquake Loads
1045 - 1115	Seismic Loads on Industrial Structures
1115 – 1145	Introduction to Structural Dynamics
1145 - 1230	Earthquake Resistant Design Methods
1230 - 1245	Break
1245 - 1335	Forced Based Design
1335 - 1420	Displacement Based Design
1420 - 1430	Recap
1430	Lunch & End of Day Three

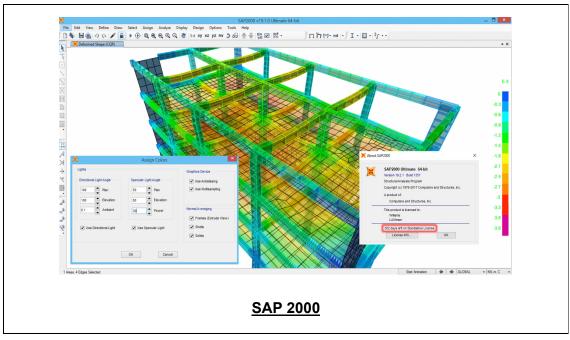
Dav 4

Code Provisions on EQ Resistant Design
Equipment Bearings & Seismic Isolators Against EQ Actions
Design of Base Isolators for Equipment
Break
Design of Vibration Bearings for Equipment
Design of Steel Industrial Structures
Steel Connections in Industrial Structures
Modelling & Analysis of EQ Resistant Steel Industrial Structure
Break
Design of Concrete Industrial Structures
Modelling & Analysis of EQ Resistant Concrete Industrial Structure
Recap
Lunch & End of Day Four


Day 5

Day 5	
0730 - 0810	Introduction to Seismic Design of Non-Structural Components in Industrial Plants
0810 - 0850	Seismic Analysis & Design of Industrial Racks
0850 - 0930	Seismic Analysis & Design of Fire Sprinkler System
0930 - 0945	Break
0945 - 1015	Seismic Analysis & Design of Suspended Ceilings
1015 - 1045	Seismic Analysis & Design of Electrical Equipment
1045 - 1115	Seismic Analysis & Design of Plumbing
1115 – 1145	Code Provisions on EQ Resistant Steel Structures
1145 - 1230	Code Provisions on EQ Resistant Concrete Structures
1230 – 1245	Break
1245 – 1315	Code Provisions on EQ Resistant Design of Non-Structural Components
1315- 1345	Limitations of Computer Aided Engineering Software
1345 -1415	Course Conclusion
1400 -1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course





Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Microsoft Excel" and "SAP 2000".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

