

COURSE OVERVIEW IE0234

Overview of OT Patch & Vulnerability Management & Automating Patch Deployment in OT Environments

Course Title

Overview of OT Patch and Vulnerability Management & Automating Patch Deployment in OT Environments

Course Date/Venue

Session 1: July 06-10, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: December 08-12, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

30 PDHs)

TKC CONTRACTOR

Course Reference

IE0234

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Overview of OT Patch and Vulnerability Management and Automating Patch Deployment in OT Environments. It covers the key differences between IT and OT security and the importance of patch management in critical infrastructure; the common vulnerabilities in SCADA, DCS and PLC systems including risk-based vulnerability management in OT networks; the compliance and regulatory requirements for OT security and developing an effective OT patch management strategy; and the vulnerability scanning and risk assessment in OT networks as well as patch testing and validation in OT environments.

Further, the course will also discuss the patch deployment planning and change management for critical infrastructure patches; managing patches for vendorsupplied ICS components and securing remote access; the vendor patch validation and approval procedures; the rapid recovery strategies for unsuccessful patch deployments and rollback procedures and system restoration; and the benefits of automating patch deployment in critical systems and selecting the right automation tools for industrial networks.

IE0234- Page 1 of 13

During this interactive course, participants will learn to secure patch distribution and deployment strategies; use configuration management tools for automated patching; integrate AI and machine learning in patch management; apply remote patch management and cloud-based deployment; implement OT patch management audit and compliance checks; the real-time monitoring of patch effectiveness and continuous improvement in patch and vulnerability management; the emergency patch deployment and zero-day response and securing configuration and hardening of OT systems; the role of threat intelligence platforms in patch prioritization; and the emerging threats and challenges in OT cybersecurity.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on OT patch and vulnerability management and automating patch deployment in operational technology (OT) environments
- Discuss the key differences between IT and OT security and the importance of patch management in critical infrastructure
- Identify the common vulnerabilities in SCADA, DCS and PLC systems including risk-based vulnerability management in OT networks
- Review the compliance and regulatory requirements for OT security and develop an effective OT patch management strategy
- Carryout vulnerability scanning and risk assessment in OT networks as well as patch testing and validation in OT environments
- Employ patch deployment planning and change management for critical infrastructure patches
- Manage patches for vendor-supplied ICS components, secure remote access and apply vendor patch validation and approval procedures
- Carryout rapid recovery strategies for unsuccessful patch deployments and rollback procedures and system restoration
- Discuss the benefits of automating patch deployment in critical systems and select the right automation tools for industrial networks
- Secure patch distribution and deployment strategies and use configuration management tools for automated patching
- Integrate AI and machine learning in patch management and apply remote patch management and cloud-based deployment
- Implement OT patch management audit and compliance checks as well as realtime monitoring of patch effectiveness and continuous improvement in patch and vulnerability management
- Apply emergency patch deployment and zero-day response and secure configuration and hardening of OT systems
- Define the role of threat intelligence platforms in patch prioritization and discuss the emerging threats and challenges in OT cybersecurity

IE0234- Page 2 of 13

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of OT patch and vulnerability management & automating patch deployment in OT environments compliance officers/regulatory managers, risk managers, OT security professionals, IT/OT convergence professionals, cybersecurity professionals, systems and network administrators, industrial engineers, incident response teams, technical support staff.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

IE0234- Page 3 of 13

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• ******* • **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED The Intel (IACET -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

IE0234- Page 4 of 13

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Said Ghanem, MSc, BSc, is a Senior Electrical & Instrumentation Engineer with almost 20 years of wide experience within the Oil, Gas, Power, Petroleum, Petrochemical and Utilities industry. His extensive experience widely covers in the areas of Process Control & Instrumentation, Pressure & Temperature Measurement, Level & Flow Measurement, Control Valve & Actuator, Distributed Control System (DCS), Programmable Logic Controllers (PLC), Control System & Instrumentation, GE Steam Turbines, Speedtronic Mark II, V & VIe, Control Systems, GE Gas

Turbine Frame V, Combined Cycle Power Plant, ABB DCS Control, Ansaldo Gas Turbine, Field Instrumentation & Calibration, PLC Step7 Control Systems, Transducers & Control Valves, Switches, Transmitters, Proximity Sensors, Control Systems Cards, Analog & Digital Multi-meters, Druck DPI 610, Hand Pump, Hart Communicator 475, Two Ansaldo Gas Turbine Model AE94.2, Process, Control Philosophy ,Logic & Wiring Diagrams, Instrument Specifications & Data Sheets For PRVs, Sensors. Control Valves. Electrostatic Discharge (ESD), Digital & Microprocessor Based Instruments, Mark VI Control System Software Program (Toolbox ST), Compact PCI Controller, IO NET, IO Packs & Terminal Boards & Sulzer Turbines. Further, he is also well-served in Firefighting Systems, Smoke Detectors & Gas Detectors, Model Predictive Control (MPC) & Adaptive Control Strategies, Control System Optimization, Real-Time Control System Monitoring, RCA Methodologies, Control Loops, Lean Methodologies, Statistical Process Control (SPC), Energy Efficiency & Process Optimization, Automation & Control Systems, Process Safety & Troubleshooting, Process Safety Controls & Mitigation Strategies, Rotating Equipment (Pumps, Turbines, Compressors), Preventive Maintenance & Reliability-Centered Maintenance (RCM) and Steam Generation Systems.

During his career life, Mr. Said has held various significant positions as the **Instrumentation & Control Maintenance Engineer**, **Instrument Field Maintenance Engineer**, **Senior Instrument Maintenance Engineer**, **Lead Instrument & Control Engineer** and **Senior Trainer/Lecturer** from the Ministry of Electrical Energy, Egyptians Maintenance Company (EMC) and Belayim Power Station Petroleum Company (Petrobel).

Mr. Said has a **Master's** degree in **Electrical Engineering** and a **Bachelor's** degree in **Electrical**, **Communication & Electronic Engineering**. Further, he is a **Certified Instructor/Trainer** and has delivered numerous trainings, courses, workshops and conferences worldwide.

IE0234- Page 5 of 13

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0745	Registration & Coffee
0745 - 0800	Welcome & Introduction
0800 - 0815	PRE-TEST
0815 – 0930	 Understanding OT Security & Industrial Control Systems (ICS) Key Differences Between IT and OT Security Industrial Control Systems (ICS) Architecture Overview Challenges in Securing OT Environments OT Security and Compliance Requirements
0930 - 0945	Break
0945 - 1045	Overview of Patch Management in OT Systems Importance of Patch Management in Critical Infrastructure • Differences Between Patch Management in IT vs. OT • Risk vs. Reward: When to Patch vs. When to Delay • Impact of Patching on System Uptime and Reliability
1045 - 1130	Understanding Vulnerabilities in OT Environments Common Vulnerabilities in SCADA, DCS, and PLC Systems • Zero-Day Vulnerabilities and Their Impact on OT Networks • Threat Intelligence and Vulnerability Databases (CVE, ICS-CERT) • Case Studies: Major OT Cyber Incidents Due to Vulnerabilities
1130 – 1230	Risk-Based Vulnerability Management in OT Networks Identifying and Classifying Vulnerabilities • Risk Scoring and Prioritization Frameworks (CVSS, NIST) • Aligning Patch Management with Risk Mitigation Strategies • Using Threat Intelligence for Patch Planning
1230 - 1245	Break
1245- 1330	<i>Compliance & Regulatory Requirements for OT Security</i> NIST 800-82: Guide to Industrial Control System Security • IEC 62443: Security for Industrial Automation and Control Systems • Cybersecurity Standards for OT Environments • UAE and International OT Security Regulations
1330 – 1420	<i>Case Study: OT Cybersecurity Breaches & Lessons Learned</i> <i>Stuxnet Attack: Exploiting Unpatched Vulnerabilities</i> • TRITON Malware: <i>Targeting ICS and Safety Instrumented Systems</i> • Colonial Pipeline Attack: <i>IT-OT Convergence Risks</i> • <i>Approach to Strengthening OT Cyber Resilience</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

Developing an Effective OT Patch Management Strategy
Key Steps in an OT Patch Management Lifecycle • Patch Deployment
Challenges in Critical Operations • Patch Scheduling Without Disrupting
Industrial Processes • Establishing Patch Testing and Validation Procedures
Vulnerability Scanning & Risk Assessment in OT Networks
Passive vs. Active Vulnerability Scanning Techniques • Identifying Security
Gaps in SCADA/DCS/PLC Systems • Risk-Based Decision Making for Patch
Application • OT-Specific Tools for Vulnerability Assessment

IE0234- Page 6 of 13

0930 - 0945	Break
0945 – 1100	Patch Testing & Validation in OT EnvironmentsEstablishing a Secure Patch Testing Environment • Simulating PatchDeployment on a Digital Twin • Testing Patches for Compatibility with ICSand PLCs • Best Practices for Patch Testing and Rollback
1100 – 1230	Patch Deployment Planning & Change Management Coordinating Patch Deployment with Operational Teams • Version Control and Patch Rollback Procedures • Change Management for Critical Infrastructure Patches • Minimizing Downtime While Applying Security Patches
1230 – 1245	Break
1245 - 1330	Third-Party Vendor Patching & Supply Chain Security Managing Patches for Vendor-Supplied ICS Components • Risks of Third- Party Software in OT Systems • Securing Remote Access for Vendor Maintenance Activities • Vendor Patch Validation and Approval Procedures
1330 – 1420	<i>Incident Response Planning for Patch Failures</i> <i>Common Patch Failures and Their Impact on Operations</i> • <i>Rapid Recovery</i> <i>Strategies for Unsuccessful Patch Deployments</i> • <i>Rollback Procedures and</i> <i>System Restoration</i> • <i>Case Study: Patch Failure and Recovery in an ICS</i> <i>Network</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

Day 5	
	Basics of Automated Patch Management for OT Systems
	Benefits of Automating Patch Deployment in Critical Systems • Challenges of
0730 – 0830	Automating Patching in Legacy OT Infrastructure • Selecting the Right
	Automation Tools for Industrial Networks • Digital Transformation Strategy
	for OT Security
	Secure Patch Distribution & Deployment Strategies
0830 - 0930	Segmentation of OT Networks for Patch Distribution • Secure Channels for
0050 - 0550	Patch Delivery and Installation • Air-Gapped System Considerations in Patch
	Deployment • Ensuring Patch Integrity with Cryptographic Hashing
0930 - 0945	Break
	Using Configuration Management Tools for Automated Patching
	Role of Configuration Management in OT Security • Popular OT Patch
0915 – 1100	Management Tools (WSUS, SCCM, Ansible, SaltStack) • Automating Patch
	Scheduling with Centralized Control • Case Study: Automating Security
	Updates for Industrial Controllers
	Integrating AI & Machine Learning in Patch Management
1100 1220	AI-Based Threat Detection and Patch Prioritization • Machine Learning for
1100 – 1230	Predictive Patch Deployment • Self-Healing OT Systems with Automated
	Remediation • Real-World Applications of AI in Industrial Cybersecurity
1230 - 1245	Break

IE0234- Page 7 of 13

1245 - 1330	Remote Patch Management & Cloud-Based Deployment Cloud vs. On-Premises Patch Management for OT Systems • Secure Remote Patch Deployment Using Zero-Trust Architecture • Implementing Multi- Factor Authentication (MFA) for Patch Access • Approach to Securing Remote Patching
1300 - 1420	<i>Hands-On Lab: Automating Patching in a Simulated OT Environment</i> <i>Setting Up an OT Patch Management Tool</i> • <i>Simulated Patch Testing and</i> <i>Deployment</i> • <i>Monitoring Patch Performance and Validating Updates</i> • <i>Troubleshooting and Optimizing Patch Automation Workflows</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 – 0930 0730 – 0930 0730 – 0930	1
and External Patch Audits • Generating Reports for Regulatory Comp Best Practices for Maintaining Patch Logs	
0930 – 0945 Break	
0930 -1115 Real-Time Monitoring of Patch Effectiveness Setting Up Security Information and Event Management (SIEM) Specific Threat Monitoring Solutions • Correlating Patch Data with Intelligence Feeds • Case Study: Identifying Post-Patch Vulnerabilities	ı Threat
1115 – 1230Continuous Improvement in Patch & Vulnerability Management1115 – 1230Lessons Learned from Past Patch Deployments • Implementing a Cor Patch Improvement Cycle • Key Metrics for Measuring Patch Effection Roadmap for OT Patch Management Strategy	ıtinuous
1230 – 1245 Break	
Emergency Patch Deployment & Zero-Day ResponseIdentifying and Responding to Zero-Day Vulnerabilities • Emergence1245 – 1420Approval Workflow for Critical Infrastructure • Isolating High-RiskDuring Emergency Patching • Case Study: Responding to a Zero-Dayin an OT Network	Systems
Recap1420 – 1430Using this Course Overview, the Instructor(s) will Brief Participants a Topics that were Discussed Today and Advise Them of the Topic Discussed Tomorrow	
1430 Lunch & End of Day Four	

Day5

0730 - 0830	Secure Configuration & Hardening of OT Systems Implementing Secure Baseline Configurations • Hardening SCADA, DCS, and PLC Systems Against Exploits • Restricting Unnecessary Services and Network Ports • Best Practices for Secure OT Network Architecture
0830 - 0930	Threat Intelligence & Future Trends in OT Security Role of Threat Intelligence Platforms in Patch Prioritization • Emerging Threats and Challenges in OT Cybersecurity • Future of AI and Blockchain in OT Patch Management • Vision for Cyber-Resilient Industrial Operations

IE0234- Page 8 of 13

0930 - 0945	Break
0945 – 1100	Real-World Case Studies of OT Patch Management Success and
0343 - 1100	Failures
1100 – 1230	Group Exercise: Patch Risk Analysis and Deployment Strategy
1230 - 1245	Break
1245 – 1345	Hands-On Lab: Implementing Automated Patch Deployment in an OT
1245 - 1545	Lab
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

IE0234- Page 9 of 13

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Allen Bradley SLC 500", "AB Micrologix 1000 (Digital or Analog)", "AB SLC5/03", "AB WS5610 PLC", "Siemens S7-1200", "Siemens S7-400", "Siemens SIMATIC S7-300", "Siemens S7-200", "GE Fanuc Series 90-30 PLC", "Siemens SIMATIC Step 7 Professional Software", "HMI SCADA", "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool", "Orifice Flow Calculator", "Automation Simulator" and "PLCLogix 5000 Software".

Allen Bradley SLC 500 Simulator

Allen Bradley Micrologix 1000 Simulator (Analog)

Allen Bradley WS5610 PLC Simulator PLC5

<u>Allen Bradley Micrologix 1000</u> <u>Simulator (Digital)</u>

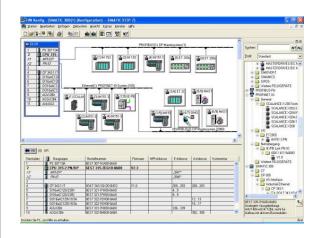
Allen Bradley SLC 5/03

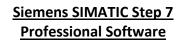
Siemens S7-1200 Simulator

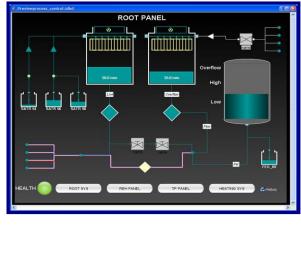
IE0234- Page 10 of 13

Haward Technology Middle East

Siemens S7-400 Simulator


Siemens SIMATIC S7-300



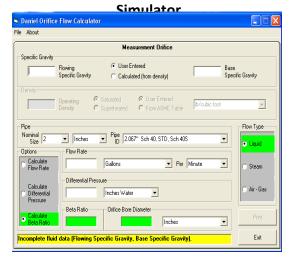

Siemens S7-200 Simulator

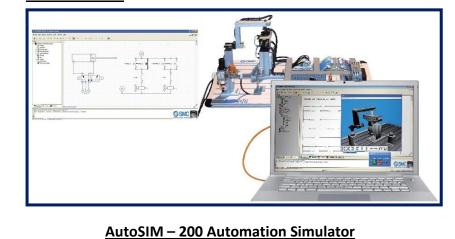
GE Fanuc Series 90-30 PLC Simulator

HMI SCADA

IE0234- Page 11 of 13

🖻 Daniel Gas USM Sizing Tool 📃 🗖 🔀
File Product Literature Help
- Process Specifications
Project Title/Tag Unit System US Customary V Minimum Maximum
Gas Composition Gas Composition Amarillo
Base Conditions
Pressure 0 psi Gage Atmospheric Pressure:
Temperature 60 DeoF - C Absolute 14.73 psi -
Process Flow Conditions If Max Flowrate has not been provided, set Max rate same as Operating flowrate and use Operating P and T. If Min Flowrate has not been provided, default to 10% of Max/Operating flowrate and use Max/Operating P and T.
Minimum Operating Maximum Units
Flowrate 75.000.000 150.000.000 ISCF • per day •
Temperature 50 120 120 DegF 💌
Pressure 500 1100 1100 psi 💌
Max/Min Flow Conditions
Maximum Flow occurs at Min Pressure V Max Temperature V Maximum velocity may occur at the highest or lowest pressure conditions. Proper sizing requires pressure
Minimum Flow occurs at Max Pressure Vinn Temperature values at the highest and lowest flows. Please select temperature and pressure at
which max and min flowrates occur.
Flowrate SCFD Pressure (psi) Temperature (DegF)
Max Flow Condition 150,000,000 500 120 Operating Flow Condition 150,000,000 1100 120
Min Flow Condition 75,000,000 1100 50
Book Next Ext

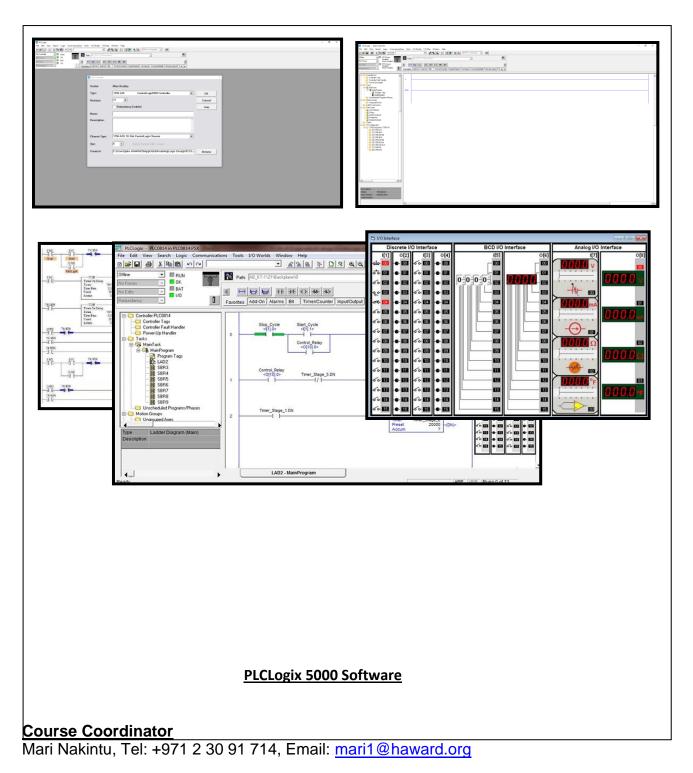

Gas Ultrasonic Meter (USM) Sizing <u>Tool Simulator</u>


Liquid Ultrasonic Meter Sizing Tool Simulator

Turbine Meter Selection			Valve Selection						
rocess Condition Project Title /		Fluid Lis	Fluid t <mark>Gasoine</mark>			Specific Gravity /	/ Density cific Gravity 💌	Viscosity	Centistoke 💌
Flow Rate	Minimum	200	Operating 400	Maximum	600	Units Gallons	·	Per Minute	×
Temperature		20	60		100	@ 'F	0.10		
Pressure			60		100	PSI	•]	
leter Selection	Series 1 Series 1	500							

Liquid Turbine Meter and Control Valve Sizing Tool

Orifice Flow Calculator Simulator



IE0234- Page 12 of 13

IE0234- Page 13 of 13

