

COURSE OVERVIEW IE0239 OT Security Information and Event Management (SIEM)

Course Title

OT Security Information and Event Management (SIEM)

Course Date/Venue

- Session 1: July 06-10, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zaved Road, Dubai, UAE
- Session 2: December 08-12, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

CEUS

30 PDHs)

Course Reference

IE0239

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of OT Security Information and Event Management (SIEM). It covers the differences between IT and OT security; the common OT cyber threats and attack vectors; the fundamentals, architecture and deployment models; the log sources, data collection and compliance and regulatory requirements; planning an OT SIEM deployment and integrating SIEM with ICS and SCADA systems; the event correlation, threat detection, log normalization and parsing in OT SIEM; the real-time security monitoring with SIEM dashboards; and the network traffic analysis and OT anomaly detection.

During this interactive course, participant will learn the SIEM integration with threat intelligence feeds and early threat detection in OT networks; automating incident response using SIEM; the industrial intrusion detection systems (IDS); the AI and machine learning for SIEM in OT environments; the response and containment strategies for OT cyber incidents; the SIEM performance optimization, continuous security monitoring, compliance auditing and forensic investigation; the patch and vulnerability management integration; and the future trends in OT SIEM and industrial cybersecurity.

IE0239 - Page 1 of 12

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on Operational Technology (OT) security information and event management (SIEM)
- Discuss the differences between IT and OT security including the common OT cyber threats and attack vectors
- Describe the fundamentals, architecture and deployment models of security information and event management (SIEM)
- Identify log sources and data collection in OT SIEM as well as compliance and regulatory requirements
- Plan an OT SIEM deployment and integrate SIEM with ICS and SCADA systems
- Apply event correlation, threat detection, log normalization and parsing in OT SIEM
- Carryout real-time security monitoring with SIEM dashboards including network traffic analysis and OT anomaly detection
- Employ SIEM integration with threat intelligence feeds and SIEM for early threat detection in OT networks
- Automate incident response using SIEM and recognize industrial intrusion detection systems (IDS)
- Apply AI and machine learning for SIEM in OT environments and response and containment strategies for OT cyber incidents
- Carryout SIEM performance optimization for OT networks, continuous security monitoring in OT SIEM and compliance auditing and forensic investigation with SIEM
- Employ patch and vulnerability management integration with SIEM and discuss the future trends in OT SIEM and industrial cybersecurity

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of OT security information and event management (SIEM) for OT network engineers, OT security engineers/architects, CISOs and security managers, cybersecurity analysts, IT/OT convergence teams, incident response teams, compliance officers, risk management professionals other technical staff.

IE0239 - Page 2 of 12

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

CREDITED The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in gualified courses of continuing education.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

IE0239 - Page 3 of 12

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Taiseer Ali, MSc, BSc, is a Senior Electrical & Telecommunications Engineer with over 30 years of extensive experience and academic experience as a University Professor specializing in High Voltage Electrical Safety, HV/LV Electrical System, Electrical Signal Analysis (ESA), Electrical Equipment Circuits, Electrical Safety, Electrical Drawing, Electrical Troubleshooting, HV/LV Equipment Inspection & Maintenance, Electrical Equipment, Electrical Motors & Drives, Power Systems & Auxiliary Power Systems, Power System Harmonics, Power

Generation & Transmission, Power Distribution & Network, Electrical Substation Design, Power Cable Testing & Fault Location, Circuit Breakers & Switchgears, Electrical Distribution Design, Installation & Commissioning and HVDC Transmission & Control, HV Switchgear Operation & Maintenance, LV Distribution Switchgear & Equipment, Protection Relays, Wiring & Testing, Electronic Circuits, Electrostatic Discharge (ESD), Lock & Tag Out, Circuit Breakers & Switchgears, Portable Cables, Transformers, Gas Insulated Substations (GIS), HV Substation Inspection & Reporting, HV Cable Design, HV Electrical System Commissioning, HV Equipment Inspection & Maintenance, Distributed Control System (DCS) Applications & Troubleshooting, SCADA & Industrial Communication, Process Logic Controller (PLC), Load Flow Calculation, Cable Installation, Transformer Maintenance, Earthing, Bonding, Lightning & Surge Protection, UPS & Battery, Instrumentation & Control, Process Control & Instrumentation, Industrial Communication, Flow Measurement, Level Measurement, Temperature & Vibration Measurement, Measurement Instrumentation, Pressure Measurement, Analytical Instrumentation, Calibration & Testing Procedures, Final Control Elements, Control Loops Operation, Control Panels, Power Generation, Power Transformers, Uninterruptible Power Systems (UPS), Battery Chargers, AC & DC Transmission, Distribution Network, Grid Input Assessment, Load Flow, Short Circuit, Smart Grid, Grounding, Advanced Networking, Datron Maintenance, Cisco Internet, Data Base Access, Advanced Computer, AutoCAD, Standard Radio Devices, Advanced Calibration, Repair and Maintenance of VHF Portable Role, Combat Vehicle Reconnaissance 76mm and Target Engagement Using Simulaser.

During his career life, Mr. Taiseer has gained his expertise and thorough practical experience through handling challenging positions such as being the Head of the Command Control & Communication Department, Head of the Academic and Technical Branch, Chief of the Frequency Branch, Commander, Electrical Engineer, Spectrum Management Engineer, Safety Engineer, Engineering Manager, Electrical Engineering Head, Quality Control Department Head, Engineering Supervisor and Lecturer/Instructor for various companies and universities such as the Yarmouk University, C3 Directorate, JAF C3 Communication Workshops, Jordan Armed Forces Joint Officer and Military Communication College and multi-national companies and institutes.

Mr. Taiseer has a Master's degree in Industrial Engineering/Engineering Management and a Bachelor's degree in Electrical/Communication Engineering. Further, he is a Certified Instructor/Trainer and has delivered numerous trainings, courses, seminars and workshops internationally.

IE0239 - Page 4 of 12

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1

Duyi	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Overview of OT Security & Its Challenges
0020 0020	Differences Between IT versus OT Security • Common OT Cyber Threats &
0850 - 0950	Attack Vectors • ICS/SCADA Security Challenges in Operations • Impact of
	Cybersecurity Breaches on Critical Infrastructure
0930 - 0945	Break
	Fundamentals of Security Information & Event Management (SIEM)
0045 1045	What is SIEM? Role in OT Security • Key Components of a SIEM System •
0943 - 1043	Differences Between IT and OT SIEM Deployments • Benefits of SIEM for
	Industrial Operations
	SIEM Architecture & Deployment Models
1045 1145	On-Premises versus Cloud-Based SIEM for OT • Centralized versus Distributed
1045 - 1145	SIEM Deployments • Data Collection Points in ICS/SCADA Environments •
	Integration with Industrial Firewalls, IDS/IPS, & SOCs
	Log Sources & Data Collection in OT SIEM
11/15 1230	Logs from PLCs, RTUs, SCADA, & DCS Systems • Network Logs versus Host-
1145 - 1250	Based Logs • Security Events from Firewalls, IDS/IPS, & Endpoints •
	Challenges of Collecting Logs from Legacy OT Systems
1230 - 1245	Break
	Compliance & Regulatory Requirements for SIEM in OT
1245 1220	NIST 800-82: Industrial Control System Security • IEC 62443: Security for
1245 - 1550	Industrial Automation & Control Systems • Cybersecurity Standards &
	Compliance Framework • UAE Cybersecurity & Industrial Regulations

	Case Study: Major OT Cyber Incidents & SIEM Lessons Learned
1220 1420	Stuxnet: How SIEM Could Have Detected the Attack • TRITON Malware:
1550 - 1420	Targeting Safety Instrumented Systems • Colonial Pipeline Attack: Ransomware
	in OT Environments • Strategy for Strengthening OT Cyber Resilience
	Recap
1420 1420	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	<i>Topics that were Discussed Today and Advise Them of the Topics to be Discussed</i>
	Tomorrow
1430	Lunch & End of Day One

Day 2

	SIEM Deployment in an OT Environment
0720 0820	Planning an OT SIEM Deployment • Integrating SIEM with ICS & SCADA
0750 - 0850	Systems • Data Flow & Event Correlation Strategies • Reducing False Positives
	in OT Security Alerts
	Event Correlation & Threat Detection
0830 0030	Event Correlation Rules in SIEM • Correlating Security Events from Different
0050 - 0550	OT Sources • Identifying Anomalous Behavior in ICS Networks • Real-Time
	Detection of Malicious Activities
0930 - 0945	Break
	Log Normalization & Parsing in OT SIEM
0045 1120	Normalizing OT Logs for Unified Analysis • Parsing Raw Data into Structured
0945 - 1150	Formats • SIEM Query Language & Rule-Based Parsing • Customizing Log
	Parsing for OT Systems
	Real-Time Security Monitoring with SIEM Dashboards
1120 1220	Designing Effective SIEM Dashboards for OT Networks • Key Security
1150 - 1250	Indicators for Industrial Control Systems • Threat Visualization for OT
	Operators & SOC Teams • Customizing SIEM Dashboards for Requirements
1230 - 1245	Break
	Network Traffic Analysis & OT Anomaly Detection
1245 1220	Monitoring Industrial Protocols (Modbus, DNP3, OPC, Profinet) • Identifying
1243 - 1550	Unauthorized OT Network Connections • Using SIEM for Detecting Lateral
	Movement Attacks • Case Study: Detecting an Intrusion in a SCADA Network
	SIEM Integration with Threat Intelligence Feeds
1330 1420	What Is Threat Intelligence, & Why It's Important? • Integrating SIEM with
1550 - 1420	Global & Specific Threat Feeds • Real-Time Threat Hunting Using SIEM • Case
	Study: Preventing Zero-Day Exploits in OT Networks
	Recap
1/20 1/30	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3

-	SIEM for Early Th	reat Detection in	1 OT Networks	Custome I	doutifiing
0730 – 0830	Unauthorized Firm	e & Runsomwan ware Changes in Case Study: Early	PLCs • Using S Warning Detection	Systems • 16 SIEM for Insid 1 of Industrial F	ler Threat
0830 - 0930	Automating Security Orchestra Automated Respons • Reducing Respons	Incident tion, Automation, se Actions • Integ se Time with Auto	Response & Response (SC rating SIEM with mated Threat Cont	Using DAR) • Playbo Incident Respo ainment	SIEM ok-Driven onse Tools

0930 - 0945	Break
	SIEM & Industrial Intrusion Detection Systems (IDS)
0045 1120	Role of IDS in ICS Security • IDS versus SIEM: Complementary Approaches •
0945 - 1150	Integrating Industrial IDS with SIEM for Comprehensive Monitoring • Case
	Study: How an IDS-SIEM Integration Stopped a Cyber Attack
	AI & Machine Learning for SIEM in OT Environments
1130 1230	Applying AI to Detect OT Cyber Threats • Machine Learning-Based Behavioral
1150 - 1250	Anomaly Detection • AI-Driven Predictive Threat Hunting in Industrial
	Networks • Case Study: Using AI for Proactive Threat Prevention
1230 - 1245	Break
	Response & Containment Strategies for OT Cyber Incidents
1245 1330	Isolating Affected Systems Without Disrupting Operations • Containment &
1245 - 1550	Recovery Strategies for ICS Networks • Role of Incident Response Teams in
	Industrial Cybersecurity • Cyber Incident Response Framework
	Hands-On Lab: Configuring an OT SIEM for Incident Detection
1330 1420	Setting Up Event Correlation Rules • Analyzing Real-Time Security Alerts •
1550 - 1420	Implementing Automated Response Workflows • Testing Incident Escalation &
	Containment Scenarios
	Recap
1/20 - 1/30	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4

	SIEM Performance Optimization for OT Networks
0720 0020	Reducing Alert Fatigue & False Positives • Balancing Security with System
0730 - 0930	Performance • Fine-Tuning Event Correlation Rules • Ensuring High
	Availability & Redundancy
0930 - 0945	Break
	Continuous Security Monitoring in OT SIEM
	Implementing a 24/7 Security Operations Model • Role of Managed Security
0945 – 1130	Service Providers (MSSP) in OT SIEM • Proactive Threat Intelligence &
	Continuous Learning • Case Study: Improving Security Monitoring for OT
	Infrastructure
	Compliance Auditing & Forensic Investigation with SIEM
	Conducting OT Security Audits Using SIEM • Forensic Investigation
1130 - 1230	Techniques in Industrial Networks • SIEM-Based Compliance Reporting for
	Regulatory Framework • Case Study: Digital Forensics in an OT Cybersecurity
	Breach
1230 - 1245	Break
	Patch & Vulnerability Management Integration with SIEM
1245 1420	Monitoring Unpatched Vulnerabilities in OT Systems • SIEM-Based
1243 - 1420	Vulnerability Scanning & Risk Assessment • Automating Patch Deployment
	Notifications • Strategy for Continuous Security Patch Management
	Recap
1420 1420	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	<i>Topics that were Discussed Today and Advise Them of the Topics to be Discussed</i>
	Tomorrow
1430	Lunch & End of Day Four

Dav	5
	-

	Future Trends in OT SIEM & Industrial Cybersecurity
0730 0830	Evolution of SIEM for ICS & SCADA Security • Cloud-Based SIEM Solutions
0750 - 0850	for OT Environments • Role of Blockchain in Industrial Security Logging •
	Preparing for the Next Generation of OT Cyber Threats
	Hands-On Lab: Advanced SIEM Use Cases in OT
0830 0030	Setting Up SIEM-Based Threat Intelligence Feeds • Automating Response to
0050 - 0950	Industrial Cyber Threats • Conducting a Full Security Investigation Using
	SIEM • Fine-Tuning SIEM Rules for Optimal Performance
0930 - 0945	Break
0945 - 1100	SIEM Deployment Case Study
1100 – 1230	Group Exercise: Designing a SIEM Architecture for OT Security
1230 - 1245	Break
1245 - 1300	Hands-On Lab: Threat Hunting & Incident Response Using SIEM
1300 - 1315	Course Conclusion
1315 - 1415	POST TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

IE0239 - Page 8 of 12

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Allen Bradley SLC 500", "AB Micrologix 1000 (Digital or Analog)", "AB SLC5/03", "AB WS5610 PLC", "Siemens S7-1200", "Siemens S7-400", "Siemens SIMATIC S7-300", "Siemens S7-200", "GE Fanuc Series 90-30 PLC", "Siemens SIMATIC Step 7 Professional Software", "HMI SCADA", "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool", "Orifice Flow Calculator", "Automation Simulator" and "PLCLogix 5000 Software".

Allen Bradley SLC 500 Simulator

Allen Bradley Micrologix 1000 Simulator (Analog)

Allen Bradley WS5610 PLC Simulator PLC5

: **P**

BAC

FOA

Allen Bradley Micrologix 1000 Simulator (Digital)

Allen Bradley SLC 5/03

Siemens S7-1200 Simulator

IE0239 - Page 9 of 12

Siemens S7-400 Simulator

Siemens SIMATIC S7-300

Siemens S7-200 Simulator

GE Fanuc Series 90-30 PLC Simulator

Siemens SIMATIC Step 7

Professional Software

HMI SCADA

IE0239 - Page 10 of 12

Gas Ultrasonic Meter (USM) Sizing **Tool Simulator**

conce Conditions							
	F	luid	Spe	cific Gravity / Density		Viscosity	
Project Title / Tag	Fluid List	asoline		300 kg/cubic me	ter 💌	1.1 Ce	intistoke
Ninimun	n Opera	ting Ma	ximum	Units			
FIOW Hate	200	400	600	Cubic Meters	•	Per Hour	-
Temperature	20	60	100	0 F @ C			
Pressure		60	100	kPa	•		
Material		ANSI CI	ass Ratings	Transducer			
Carbon Steel Body and I	Flanges (-46°C to 150°	C) 💌 150 AN	ISI / PN 20 💌	LT-01 transducer (-51	1°C to 100°C	with NBR o-rings	
Nominal Line Size	Schedule 🔽	alculations	ore ID	Meter	Linearity	Flow Direction	
6 inch (DN 150)	Schedule 40	•	6.065 Inches	▼ ±	15%	Uni-Directional	

Liquid Ultrasonic Meter Sizing **Tool Simulator**

Tur	bine Meter	Selection			Ľ		٧a	lve Sele	tion		
Project Title / Tag	Fluid L	Fluid İst <mark>Gasoln</mark>	2			Specific Gra	vity / Density Specific Gravi	ty 💌	Viscosity 1.1	Centistoke	×
Minimum Flow Rate	200	Operating	400	Maximum	600	Units Galk	ns	•	Per Minu	te 💌	
Temperature	20		60		100	۴ ک	0.0				
Pressure			60		100	PSI		•			
eter Selection Turbine C Series Meter C Series	: 1200 : 1500										

Liquid Turbine Meter and Control Valve Sizing Tool Simulator

		Measurement Orifice	
pecific Gravity-			
,	Flowing Specific Gravity	 User Entered Calculated (from density) 	Base Specific Gravity
ensity-	Operating Density	Saturated G User Entered Superheated C From ASME Table	ic foot 💌
ipe Iominal r			Flow Type
Size 2	Inches Flow Bate	Pipe 2.067" Sch 40, STD, Sch 40S	▼ • Liquid
Size 2 ptions Calculate Flow Rate	Inches Flow Rate	Pipe 2.067" Sch 40, STD, Sch 40S Galons Per Minute	 Liquid Steam
Size 2 Iptions Calculate Flow Rate Calculate Differential Pressure	Inches Inches Inches Differential Pre-	Poe 2067" Sch 40, STD, Sch 40S Galons Per Minute essure Inches Water	✓ Liquid ✓ Steam

Orifice Flow Calculator Simulator

Mari Nakintu, Tel: +971 230 91 714, Email: mari1@haward.org

IE0239 - Page 12 of 12

