

COURSE OVERVIEW EE0510 DC Machine Maintenance

<u>Course Title</u> DC Machine Maintenance

Course Date/Venue

Session 1: May 18-22, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE Session 2: December 08-12, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

CEUS

(30 PDHs)

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

Power Electronics is an integral part of all modern systems design. Its applications range from the Power Utilities to the design of information superhighways and building space stations. The purpose of this course is to understand the basic operating principles of power conversion using advanced electronic devices. The structures and characteristics of switching devices are reviewed. Basic converters such as ac/dc rectifiers, dc/dc switching regulators, and dc/ac inverters are studied. Resonant power conversion techniques are introduced. Methods of analysis with derivatives of waveforms and computation of circuit quantities such as average and RMS values, power, power factor, and harmonics are given in some details.

EE0510 - Page 1 of 8

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- To learn about the various types of power conversion systems
- To learn about different applications of power electronics, and get an overview of future trends in power electronics
- To understand ideal and practical switches and their switching characteristics
- To learn how to analyze power electronics circuits
- To learn techniques for calculating power using harmonic concepts
- To understand the operation and characteristics of rectifier circuits
- To understand the operation and characteristics of phase-controlled converter circuits
- To understand the operation and characteristics of force-commutated converter circuits
- To understand the operation and characteristics of Pulse Width Modulated (PWM) converters
- To understand the operation of the Buck, Boost, and Buck-Boost converters
- To learn about operating the converters in continuous and discontinuous conduction modes
- To understand the operation and characteristics of DC-AC inverters
- To learn about pulse-width modulation and its use in operating inverter circuits.
- To recognize the differences between high- and low-power converters
- To understand the advantages and disadvantages of soft-switching topologies
- To study the operation of Zero-Current and Zero-Voltage switching circuits
- To recognize the differences between resonance- and PWM converters

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of operations of interconnected power systems through AC and DC converter for electrical, electronics, control and instrumentation personnel.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

EE0510 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

- **BAC** <u>B</u>
 - British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

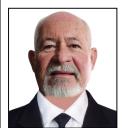
• ACCREDITED

<u>The International Accreditors for Continuing Education and</u> <u>Training (IACET - USA)</u>

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.


EE0510 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Ken Steel is a Senior Electrical & Instrumentation Engineer with over 30 years of extensive experience. His expertise widely covers Earthing & Lightning Protection Design, Underground Equipment, Electrical Safety, Electrical Motors Testing, Heat Tracing & Insulation Installation & Testing, HV Terminations, High & Low Voltages on Overhead Cranes, HV/MV Cable Splicing, Cable & Over Head Power Line, HV/MV Switchgear, HV Cable Design, Medium & High Voltage Equipment, High Voltage Circuit Breaker Inspection &

Repair, High Voltage Power System, HV Equipment Inspection & Maintenance, HV Switchgear Operation & Maintenance, Resin / Heat Shrink & Cold Shrink Joints, HV/LV Equipment, LV & HV Electrical System, Cable Splicing & Termination, High Voltage Electrical Safety, LV, MV & HV Cable Installations & Properties, LV Substation, MV & LV Cable, UPS Systems, MV & LV Direct on Line Motor Drives, MV & LV VSD Motor Drives, MV & LV Soft Starter Motor Drives, LV Two Speed Motor Drives, Underground Transformer Oil Containment Tank, Electrical & Instrumentation Construction Installation, 1500KW, 1000KW, 1752KW Diesel Power Plant Installation, 110KV Overhead Line, 110KV Outdoor Switchgear, 110KV/10KV 6500KVA Transformer, Transformer Substation, 1600KVA 10KV/0.4KV & 2 Off 1000KVA Diesel Generators, 1600KVA 10KV/0.4KV & 1650KVA Diesel Generator. 110KV/35KV/10KV Substation. 110KV/10KV Transformers, 110KV & 2 Off 6KV Overhead Lines, 34.5KV, 13.8KV, 4.16KV & 480V Switchgear, 4.16KV & 480V MCC, Transformers & Motor Drives Substations, Diesel Driven Generators, Overhead Cranes, Overhead Cranes & HVAC Units, AC & DC Drives, Data Logger, Electrical, Instrumentation & Mechanical Installation Maintenance, Slab Mills, Pre Heat Ovens, Hydraulic Shears, Stamping Machine, Gearboxes, Rollers, Pumps, Valves, Electro Magnets & Pump House Operation, Boilers Construction And Commissioning, Valve Calibration & Testing, Level Gauges, Pressure & Flow Transmitters Installation & Calibration, Pressure & Leak Testing of Boilers, Leak Testing, SMP, Elect, I&C, F&G, HVAC & Utility Services, Nitrogen Leak Test Operations, Steam Blowing Activities, SMP, Elect, I&C, F&G, HVAC & Utility Services, PTW Issue (PA/AC), Installation & Mechanical Piping and Hydro Testing & Leak Testing of Lines Installation.

During Mr. Steel's career life, he has gained his practical experience through several significant positions and dedication as the **3GP PBF & Boilers SC Commission Support**, **SC Site Execution Superintendent**, **E&I Construction Superintendent**, **High Voltage Construction Supervisor**, **Control & Power Construction Supervisor**, **Electrical & Instrumentation Supervisor**, **Electrical Technician**, **Construction Support Electrical Engineer**, **E&I Engineer**, **Electrical/Instrumentation Site Supervisor**, **Q.A/Q.C Inspector**, **Electrical/ Instrumentation Technician**, **Maintenance Fitter Instrumentation Technician**, **Millwright**, **Apprentice Millwright** and **Senior Instructor/Lecturer** for Tengiz Chevron Oil Kazakhstan, Al Jubail Saudi Arabia, Escravos Delta state Nigeria, Lurgi S.A, SuD Chemie Sasol Catalysts, J C Groenewalds Construction (LTA), Tycon (Goodyear S.A.), Dragline Construction and Iscor Vanderbijlpark.

Mr. Steel has a **Diploma** in **Electronics Mechanic**. Further, he is a **Certified Instructor/Trainer** and delivered numerous trainings, courses, workshops, seminars and conferences internationally.

EE0510 - Page 4 of 8

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Power Electronic System
	Introduction • Power Electronics versus Linear Electronics • Scope and
0830 - 0915	Applications • Classification of Power Processors and Converters • About the
	Text • Interdisciplinary Nature of Power Electronics • Convention of Symbols
	Used
0915 - 0930	Break
	Overview of Power Semiconductor Switches
	Introduction • Diodes • Thyristors • Desired Characteristics in Controllable
0930 - 1100	Switches • Bipolar Junction Transistors and Monolithic Darlingtons • Metal-
	Oxide-Semiconductor Field Effect Transistors • Gate-Turn-Off Thyristors •
	MOS-Controlled Thyristors • Comparison of Controllable Switches • Drive and
	Snubber Circuits • Justification for Using Idealized Device Characteristics
1100 - 1245	Review of Basic Electrical and Magnetic Circuit Concepts
	Introduction • Electric Circuits • Magnetic Circuits
1245 - 1300	Break
	Computer Simulation of Power Electronic Converters and Systems
1300 - 1420	Introduction • Challenges in Computer Simulation • Simulation Process •
	Mechanics of Simulation • Solution Techniques for Time-Domain Analysis •
	Widely Used, Circuit-Oriented Simulators • Equation Solvers
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

EE0510 - Page 5 of 8

Day 2

	Line-Frequency Diode Rectifiers: Line-Frequency $AC \rightarrow Uncontrolled DC$
0800 - 0915	Introduction • Basic Rectifier Concepts • Single-Phase Diode Bridge Rectifiers • Voltage-Doubler (Single-Phase) Rectifiers • Effect of Single-Phase Rectifiers on
	Neutral Currents in Three-Phase, Four-Wire Systems
0915 - 0930	Break
	Line-Frequency Diode Rectifiers: Line-Frequency AC \rightarrow Uncontrolled DC
	(cont'd)
0930 - 1100	Three-Phase, Full-Bridge rectifiers • Comparison of Single-Phase and Three-
	Phase Rectifiers • Inrush Current and Overvoltages at Turn-On • Concerns
	and Remedies for Line-Current Harmonics and Low Power Factor
	Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-
	Frequency \leftrightarrow Controlled DC
1100 - 1245	Introduction • Thyristor Circuits and Their Control • Single-Phase Converters
	Three-Phase Converters Other Three-Phase Converters
1245 - 1300	Break
	DC-DC Switch-Mode Converters
1300 - 1420	Introduction • Control of DC-DC Converters • Step-Down (Buck) Converter •
	Step-Up (Boost) Converter • Buck-Boost Converter • Cúk DC-DC Converter •
	Full Bridge DC-DC Converter • DC-DC Converter Comparison
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

	Switch-Mode DC-AC Inverters: $DC \leftrightarrow$ Sinusoidal AC
0800 - 0915	Introduction • Basic Concepts of Switch-Mode Inverters • Single-Phase Inverters
	• Three-Phase Inverters • Effect of Blanking Time on Output Voltage in PWM
	Inverters • Other Inverter Switching Schemes • Rectifier Mode of Operation
0915 - 0930	Break
	Resonant Converters: Zero-Voltage and/or Zero-Current Switchings
	Introduction • Classification of Resonant Converters • Basic Resonant Circuit
0930 - 1100	Concepts • Load-Resonant Converters • Resonant-Switch Converters • Zero-
	Voltage-Switching, Clamped-Voltage Topologies • Resonant-dc-Link Inverters
	with Zero-Voltage Switchings • High-Frequency-Link Integral-Half-Cycle
	Converters
	Switching DC Power Supplies
	Introduction • Linear Power Supplies • Overview of Switching Power Supplies •
1100 - 1245	DC-DC Converters with Electrical Isolation • Control of Switch-Mode DC Power
	Supplies • Power Supply Protection • Electrical Isolation in the Feedback Loop •
	Designing to Meet the Power Supply Specifications
1245 - 1300	Break

EE0510 - Page 6 of 8

1300 - 1420	Power Conditioners and Uninterruptible Power SuppliesIntroduction• Power Line Disturbances• Power Conditioners•Uninterruptible Power Supplies (UPSs)
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

Day 4	
	Introduction to Motor Drives
	Introduction • Criteria for Selecting Drive Components
	DC Motor Drives
0800 - 0915	Introduction • Equivalent Circuit of DC Motors • Permanent-Magnet DC
	Motors • DC Motors with a Separately Excited Field Winding • Effect of
	Armature Current Waveform • DC Servo Drives • Adjustable-Speed DC
	Drives
0915 - 0930	Break
	Induction Motor Drives
	Introduction • Basic Principles of Induction Motor Operation • Induction
	Motor Characteristics at Rated (Line) Frequency and Rated Voltage • Speed
	Control by Varying Stator Frequency and Voltage • Impact of Nonsinusoidal
	Excitation on Induction Motors • Variable-Frequency Converter
	Classifications • Variable-Frequency PWM-VSI Drives • Variable-Frequency
	Square-Wave VSI Drives • Variable-Frequency CSI Drives • Comparison of
	Variable-Frequency Drives • Line-Frequency Variable-Voltage Drives •
0930 - 1100	Reduced Voltage Starting ("Soft Start") of Induction Motors • Speed Control
0000 1100	by Static Slip Power Recovery
	Synchronous Motor Drives
	Introduction • Basic Principles of Synchronous Motor Operation •
	Synchronous Motor Operation • Synchronous Servomotor Drives with
	Sinusoidal Waveforms • Synchronous Servomotor Drives with Trapezoid
	Waveforms • Load-Commutated Inverter Drives • Cycloconverters
1100 - 1245	Electric Utility Applications
1100 1210	Introduction • High-voltage DC Transmission
1245 - 1300	Break
	Electric Utility Applications (cont'd)
1300 - 1420	Static var Compensators • Interconnection of Renewable Energy Sources and
	Energy Storage Systems to the Utility Grid
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

EE0510 - Page 7 of 8

Day 5	
0800 - 0915	Electric Utility Applications (cont'd)
	Active Filters
0915 - 0930	Break
	Optimizing the Utility Interface with Power Electronic Systems
0930 - 1045	Introduction • Generation of Current Harmonics • Current Harmonics and
	Power Factor
1045 - 1100	Break
	Optimizing the Utility Interface with Power Electronic Systems
1100 - 1230	(cont'd)
	Harmonic Standards and Recommended Practices • Need for Improved Utility
	Interface
	Optimizing the Utility Interface with Power Electronic Systems
1230 - 1345	(cont'd)
	Improved Single-Phase Utility Interface • Improved Three-Phase Utility
	Interface • Electromagnetic Interference
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE0510 - Page 8 of 8

