

<u>COURSE OVERVIEW EE0754</u> <u>Safe Area Restoration - Electrical Maintenance</u>

(30 PDHs)

AWAR

<u>Course Title</u> Safe Area Restoration - Electrical Maintenance

Course Date/Venue

Session 1: July 13-17, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: December 15-19, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Power System Restoration. It covers the power system operations, components and key functions; the disturbances and blackouts including their causes and impact on the grid; the common causes of power system disturbances, like the equipment failure, natural disasters and operational errors; the effects of blackouts on power systems and best practices for planning and maintaining a reliable power grid; and the power system stability concepts and transient stability and its role in preventing system collapse during disturbances.

Further, the course will also discuss how to calculate shortcircuit currents and analyze fault conditions; the importance of proper grounding in maintaining system stability and safety; the role of current and voltage transformers in system protection and metering; the principles of phase and ground overcurrent protection and their applications; and the directional overcurrent and earth fault protection, transformer protection schemes, distance protection principles and busbar protection systems.

EE0754 - Page 1 of 9

During this interactive course participants will learn the control functions in power system operations; the techniques and resources available for restoring power systems after a blackout; the interconnected power systems, blackout occurrence mechanisms and tools and methods for performing contingency analysis to prevent blackouts; developing a restoration plan and executing system recovery after disturbances; measuring the impact of blackouts on customers and evaluating system reliability; managing thermal and voltage limits during the restoration process to prevent further disturbances; analyzing transfer limits during system restoration, including PV curves and contingency conditions; the application of international practices in restoration; and the future trends in power system restoration including the integration of renewable energy sources and smart grid technologies.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge of power system restoration
- Discuss the power system operations, components and key functions as well as the disturbances and blackouts including their causes and impact on the grid
- Identify the common causes of power system disturbances, like the equipment failure, natural disasters and operational errors
- Recognize the effects of blackouts on power systems and best practices for planning and maintaining a reliable power grid
- Discuss power system stability concepts and transient stability and its role in preventing system collapse during disturbances
- Calculate short-circuit currents and analyze fault conditions and explain the importance of proper grounding in maintaining system stability and safety
- Define the role of current and voltage transformers in system protection and metering and the principles of phase and ground overcurrent protection and their applications
- Explain directional overcurrent and earth fault protection, transformer protection schemes, distance protection principles and busbar protection systems
- Recognize the control functions in power system operations and techniques and resources available for restoring power systems after a blackout
- Identify interconnected power systems, blackout occurrence mechanisms and tools and methods for performing contingency analysis to prevent blackouts
- Develop a restoration plan and execute system recovery after disturbances as well as measure the impact of blackouts on customers and evaluate system reliability
- Employ best practices for restoring a power system after a major blackout including sectionalizing and re-energizing strategies
- Manage thermal and voltage limits during the restoration process to prevent further disturbances
- Analyze transfer limits during system restoration, including PV curves and contingency conditions
- Review the application of international practices in restoration and discuss the technical constraints that may arise during system restoration and how to address them
- Explore the future trends in power system restoration including the integration of renewable energy sources and smart grid technologies

EE0754 - Page 2 of 9

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of power system restoration for power system operators, electrical engineers, maintenance personnel, utility managers, protection and control engineers, emergency response teams, regulatory personnel and other technical staff.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. The rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

EE0754 - Page 3 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

BAC British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.835 CEUs** (Continuing Education Units) or **28.35 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

EE0754 - Page 4 of 9

<u>Course Program</u> The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1

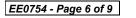
0730 – 0800 Registration & Coffee	
0800 – 0815 Welcome & Introduction	
0815 – 0830 PRE-TEST	
0830 – 0930 Introduction to Power System Operation: Overview of Po	ower System Operations,
Components & Key Functions	
0930 – 0940 Break	
0940 – 1015 Power System Disturbances & Blackouts: Understa	inding Disturbances &
Blackouts including their Causes & Impact on the Grid	-
Causes of Power System Disturbances: Exploring Con	
1015 – 1100 System Disturbances, such as Equipment Failure, Natural	Disasters & Operational
Errors	
1100 - 1230 Effects of Blackouts on Power Systems: Analyzing the	Technical, Economic &
Social Impacts of Blackouts	
1230 – 1305 Case Studies of Famous Blackouts: Reviewing Major Black	ckouts (e.g., U S, Europe
& Jordan) & their Causes & Consequences	
1320 – 1330 Break	
1330 - 1350 Planning for Reliable Power Grid Operations: Best P	ractices for Planning &
Maintaining a Reliable Power Grid	
1350 – 1400 Recap	
1400 Lunch & End of Day One	

Dav 2

0730 - 0830	Power System Stability Concepts: Introduction to Voltage, Frequency & Rotor Angle Stability in Power Systems
0830 - 0930	Transient Stability: Understanding Transient Stability & its Role in Preventing System Collapse during Disturbances
0930 - 0940	Break
0940 - 1100	Short-Circuit Calculation: Methods for Calculating Short-Circuit Currents & Analyzing Fault Conditions
1100 – 1230	System Grounding Principles: Importance of Proper Grounding in Maintaining System Stability & Safety
1230 – 1320	<i>Instrument Transformers (CTs & VTs):</i> Role of Current & Voltage Transformers in System Protection & Metering
1320 - 1330	Break
1330 - 1350	Non-Directional Overcurrent (O/C) Protection: Principles of Phase & Ground Overcurrent Protection & their Applications
1350 – 1400	Recap
1400	Lunch & End of Day Two

EE0754 - Page 5 of 9

Day 3


0730 - 0830	Directional Overcurrent & Earth Fault Protection: Exploring Directional
	Protection for Both Phase & Earth Faults
0830 - 0930	Transformer Protection Schemes: Understanding Transformer Protection
	including Differential & Overcurrent Protection
0930 - 0940	Break
0940 - 1100	Distance Protection Principles: Introduction to Distance Protection including
	Zone Protection Schemes & Applications
1100 – 1230	Busbar Protection Systems: Techniques & Technologies for Protecting Busbars from
	Faults
1230 - 1320	Control Functions in Power System Operations: Overview of Control Functions
	including Voltage & Frequency Control During Normal & Emergency Conditions
1320 - 1330	Break
1330 - 1350	Strategies for System Restoration: Identifying Techniques & Resources Available
	for Restoring Power Systems After a Blackout
1350 - 1400	Recap
1400	Lunch & End of Day Three

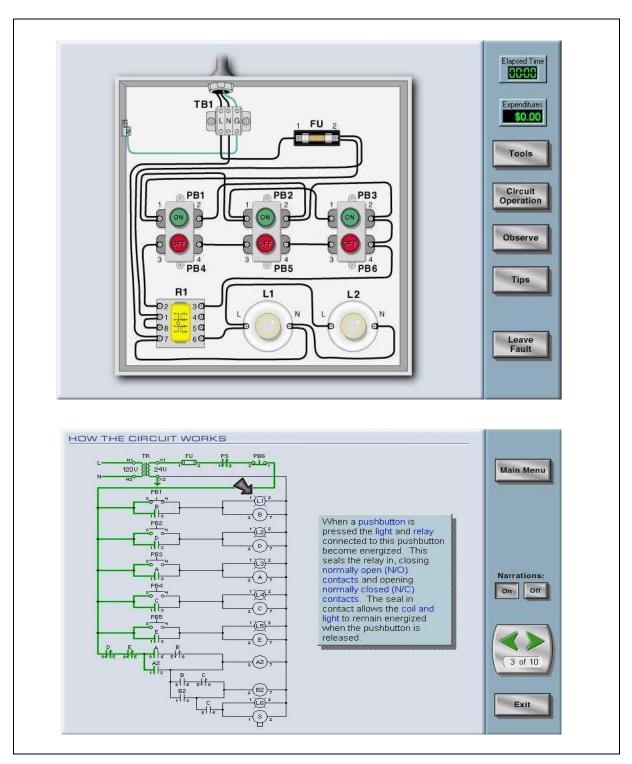
Day 4

	Interconnected Dozner Suctome Understanding July Dozner Sustance Are
0730 – 0830	Interconnected Power Systems: Understanding why Power Systems Are
	Interconnected & the Benefits of Interconnectivity
0830 - 0930	Blackout Occurrence Mechanisms: How Blackouts Occur in Interconnected
	Systems & their Triggering Conditions
0930 - 0940	Break
0940 - 1100	Blackout Scenarios & Case Studies: Detailed Review of Blackout Incidents
	including Causes & Restoration Strategies
1100 – 1230	Contingency Analysis & System Restoration: Tools & Methods for Performing
	Contingency Analysis to Prevent Blackouts
1230 - 1320	Restoration Planning & Execution: Developing a Restoration Plan & Executing
	System Recovery After Disturbances
1320 - 1330	Break
1330 - 1350	Customer Impact & Reliability Considerations: Measuring the Impact of
	Blackouts on Customers & Evaluating System Reliability
1350 - 1400	Recap
1400	Lunch & End of Day Four

Day 5

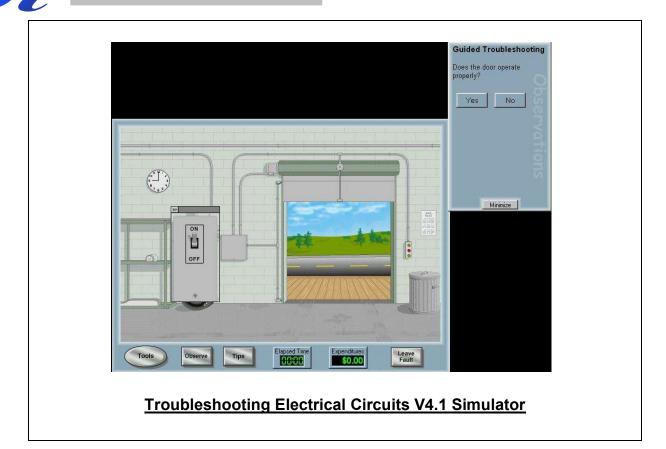
0730 - 0830	Power System Restoration Strategies: Best Practices for Restoring a Power System After a Major Blackout including Sectionalizing & Re-Energizing Strategies
0830 - 0930	Thermal & Voltage Limits in Restoration: Managing Thermal & Voltage Limits During the Restoration Process to Prevent Further Disturbances
0930 - 0940	Break
0940 - 1100	Transfer Limit Analysis: Techniques for Analyzing Transfer Limits During System Restoration including PV Curves & Contingency Conditions

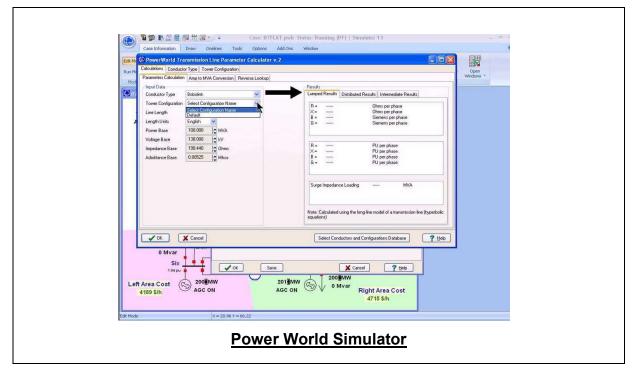
1100 - 1230	Application of International Practices in Restoration: Reviewing International
	Restoration Practices & Case Studies (e.g., US & European Restoration Processes)
1230 – 1250	Restoration Challenges & Technical Constraints: Discussing the Technical
	Constraints that may Arise During System Restoration & how to Address them
1250 – 1300	Break
1300 – 1315	System Restoration & Future Trends: Overview of Future Trends in Power System
	Restoration including the Integration of Renewable Energy Sources & Smart Grid
	Technologies
1315 – 1330	Course Conclusion
1330 - 1345	POST-TEST
1345 - 1400	Presentation of Course Certificates
1400	Lunch & End of Course


EE0754 - Page 7 of 9

Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Troubleshooting Electrical Circuits V4.1 Simulator", and "Power World".





EE0754 - Page 8 of 9

Haward Technology Middle East

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE0754 - Page 9 of 9

