

COURSE OVERVIEW EE0697 Energy Efficiency Benchmarking

Course Title

Energy Efficiency Benchmarking

Course Date/Venue

Session 1: July 20-24, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE Session 2: December 22-26, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

> CEUS (30 PDHs)

Course Reference EE0697

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life studies and case exercises where participants will be engaged in a series of interactive small groups and class workshops.

VCLUDED

This course is designed to provide participants with a detailed and up-to-date overview of Energy Efficiency Benchmarking. It covers the importance of energy conservation and efficiency and its benefits for district cooling companies; the current energy consumption patterns and key components of an effective energy management systems (EnMS); the energy audits and assessments and common areas for energy savings; prioritizing energy conservation measures; and the key performance indicators for energy efficiency and methods for measuring and monitoring energy efficiency.

Further, the course will also discuss the best practices for HVAC system operation and how to improve chiller performance, pump and motor efficiency; the lighting systems, building envelope improvements and water conservation and efficiency; the renewable energy sources and solar energy and wind energy integration; the geothermal energy systems and combined heat and power (CHP) systems; the energy management plan, behavioral change and energy awareness; and the setting of energy performance targets.

EE0697 - Page 1 of 8

IA©ET

EE0697-07-25|Rev.01|28 January 2025

During this interactive course, participants will learn the continuous monitoring techniques, demand side management (DSM), financial analysis and ROI; the government and utility incentives and funding opportunities for energy efficiency projects; the role of smart grids in energy management; the integration of IOT devices for enhanced efficiency; and the energy storage solutions, advanced data analytics for energy management and carbon footprint reduction.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on energy efficiency benchmarking
- Discuss the importance of energy conservation and efficiency and its benefits for district cooling companies
- Explain the current energy consumption patterns and the key components of an effective energy management systems (ENMS)
- Conduct energy audits and assessments, identify common areas for energy savings and prioritize energy conservation measures
- Apply the key performance indicators for energy efficiency and methods for measuring and monitoring energy efficiency
- Employ best practices for HVAC system operation and improve chiller performance, pump and motor efficiency
- Recognize lighting systems, building envelope improvements and water conservation and efficiency
- Identify renewable energy sources and apply solar energy and wind energy integration
- Recognize geothermal energy systems and combined heat and power (CHP) systems
- Develop an energy management plan and apply behavioral change and energy awareness
- Set energy performance targets and apply continuous monitoring techniques, demand side management (DSM), financial analysis and ROI
- Discuss government and utility incentives and funding opportunities for energy efficiency projects
- Define the role of smart grids in energy management and apply integration of IOT devices for enhanced efficiency
- Apply energy storage solutions, advanced data analytics for energy management and carbon footprint reduction

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

EE0697 - Page 2 of 8

EE0697-07-25|Rev.01|28 January 2025

Who Should Attend

This course provides an overview of all significant aspects and considerations of energy efficiency benchmarking for energy managers, facility managers, sustainability officers, engineers, building operators, maintenance technicians, environmental consultants, students and trainers.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

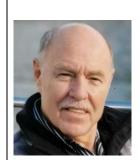
Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.


EE0697 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Fred Du Plessis is a Senior Electrical Engineer with over 30 years of extensive experience within the Oil, Gas, Petrochemical, Refinery & Power industries. His expertise widely covers in the areas of Thermal Gas Power Generation, Power Station Operations, Power Generation Plant Outage Management, Power System Analysis, Power System Generation & Distribution, Electric Power System Design, Renewable Energy, Energy Storage Technologies, Maintenance, Testing & Troubleshooting, Transformer Protection, Transformer Problem and Failure Investigations. Power System

Operation and Control, Fault Analysis in Power Systems, HV/MV Cable Splicing, High Voltage Electrical Safety, High Voltage Circuit Breaker Inspection & Repair, High Voltage Power System, HV Equipment Inspection & Maintenance, HV Switchgear Operation & Maintenance, Resin / Heat Shrink & Cold Shrink Joints, HV/LV Equipment, ORHVS for Responsible and Authorized Person High Voltage Regulation, Transformers Maintenance, inspections & repairs, Commissioning of LV & HV Equipment, Oil Purification and **High Voltage Maintenance**, HT Switch Gear -Testing, Safe Operating, Maintenance, Inspection & Repairs on LV & HT Cables - Testing (Pulse & Megger), Line Patrol in Low Voltage & Distribution, Transmission, Operating Principles up to 132KV, Abnormal Conditions & Exceptions, Commissioning & Testing, Transformer Inspections & Repairs, Live Line Work up to 33KV, Basic Power System Protection, High Voltage Operating Preparedness Phasing (110V to 132KV), HV Operating & Fault Finding (up to 132KV), Maintenance & Construction Supervision, VSD/VFD Installations & Testing, Electrical Panel Design, VSD/VFD Installations & Testing, Instrument Installation and wiring, AC/DC Supplies & Change Over Systems, AC & DC Winders and VLF Testing, Gas Turbines, Steam Turbine with a Station Generation, Project Management & Project Controls, Water Treatment & Reverse Osmosis Plant Management and Mechanical Maintenance Management.

During Mr. Du Plessis's career life, he has gained his practical experience through several significant positions and dedication as the **Project Manager/Owner**, **Maintenance Manager**, **Project Excecution Manager**, **Commissioning & Operating Manager**, **Acting Operating Manager**, **Optimization/Commissioning Manager**, **Operating Support Manager**, **Operating Production/Shift Manager**, **Operations Lead Engineer**, **Electrical Engineer**, **Production/Maintenance Planner**, **Unit Shift Supervisor**, Principal **Plant Operator**, **Workshop & Maintenace Consultant**, Assistant **Electrical Supervisor**, Trainee **Motor Mechanic** and **Senior Instructor/Trainer** from various international **power station** companies like the Dunamis Energy, Peterhead Power Station, Lijaco Services, Eskom, Matla Power Station, Grootvlei Power Station, Ellisras Brick & Ceramic, Hlalisanani Mechanical Contractor, Matimba Power Station, Matimba Power Station, Eskom Kriel Power Station and Transvaal Provincial.

Mr. Du Plessis has a **Bachelor's** (with Honours) degree in **Operations Management**. Further, he holds certification in Red & Silver Seal Accreditation Power Generation – (ESETA), a SAMTRAC & NOSA **Auditor** – (NOSA), a **Certified Instructor/Trainer** and has further delivered various trainings, seminars, conferences, workshops and courses globally.

EE0697 - Page 4 of 8

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	Overview of Energy Conservation & Efficiency
	Definitions and Importance • Benefits for District Cooling Companies
0900 - 0930	Global Energy Trends
	<i>Current Energy Consumption Patterns</i> • <i>Future Projections and Challenges</i>
0930 - 0945	Break
0945 1130	Energy Management Systems (EnMS)
0945 – 1130	Introduction to ISO 50001• Key Components of an Effective EnMS
1130 1200	Energy Audits & Assessments
1130 - 1200	Purpose and Types of Energy Audits • Steps for Conducting an Energy Audit
1200 - 1230	Energy Audits & Benchmarking
1200 - 1230	Conducting Energy Audits • Benchmarking Energy Performance
1230 – 1245	Break
	Identifying Energy Conservation Opportunities
1245 – 1330	Common Areas for Energy Savings • Prioritizing Energy Conservation
	Measures
1330 - 1420	Energy Efficiency Metrics & KPIs
	Key Performance Indicators for Energy Efficiency • Methods for Measuring and
	Monitoring Energy Efficiency
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

EE0697 - Page 5 of 8

ilm A©ET

Day 2	
0730 - 0830	HVAC Systems Optimization Energy Efficient HVAC Technologies • Best Practices for HVAC System Operation
0830 - 0930	<i>Chiller Efficiency</i> <i>Improving Chiller Performance</i> • <i>Maintenance Practices for Optimal Efficiency</i>
0930 - 0945	Break
0945 - 1130	Pump & Motor Efficiency Selecting and Maintaining Energy Efficient Pumps and Motors • Variable Frequency Drives (VFDs) and Their Benefits
1130 - 1230	Lighting Systems Energy Efficient Lighting Solutions • Automation and Control of Lighting Systems
1230 - 1245	Break
1245 - 1330	Building Envelope Improvements Insulation, Windows, and Doors • Impact of Building Envelope on Energy Consumption
1330 - 1420	<i>Water Conservation & Efficiency</i> <i>Efficient Water Use in District Cooling</i> • <i>Technologies and Practices for Water</i> <i>Savings</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

Days	
0730 - 0830	<i>Overview of Renewable Energy Sources</i> <i>Solar, Wind, Geothermal, and Biomass</i> • <i>Relevance to District Cooling Systems</i>
0830 - 0930	Solar Energy Integration Solar Photovoltaic (PV) Systems • Solar Thermal Systems for Heating and
	Cooling
0930 - 0945	Break
0945 – 1130	<i>Wind Energy Integration</i> <i>Small-Scale Wind Turbines</i> • <i>Applications and Benefits in Urban Areas</i>
1130 – 1230	<i>Geothermal Energy Systems</i> <i>Ground Source Heat Pumps (GSHP)</i> • <i>Integration with District Cooling</i>
1230 – 1245	Break
1245 – 1330	<i>Combined Heat & Power (CHP) Systems</i> <i>Basics of CHP and Trigeneration</i> • <i>Benefits and Applications in District Cooling</i>
1330 - 1420	<i>Case Studies on Renewable Energy Integration</i> <i>Real-World Examples</i> • <i>Lessons Learned and Best Practices</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

EE0697 - Page 6 of 8

Day 4	
0730 - 0830	Developing an Energy Management Plan Steps to Create an Effective Plan Involving Stakeholders and Gaining Buy-In
0830 - 0930	Behavioral Change & Energy Awareness Engaging Employees in Energy Conservation • Training and Awareness Programs
0930 - 0945	Break
0945 - 1130	<i>Energy Monitoring & Targeting</i> <i>Setting Energy Performance Targets</i> • <i>Techniques for Continuous Monitoring</i>
1130 – 1230	Demand Side Management (DSM) Techniques for Managing Energy Demand • Peak Load Reduction Strategies
1230 - 1245	Break
1245 - 1330	<i>Financial Analysis & ROI</i> <i>Calculating Return on Investment for Energy Projects</i> • <i>Life Cycle Cost Analysis</i>
1330 - 1420	<i>Incentives & Funding Opportunities</i> <i>Government and Utility Incentives</i> • <i>Funding Opportunities for Energy</i> <i>Efficiency Projects</i>
1420 - 1430	RecapUsing this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0700 - 0830	Smart Grid & IoT for Energy Efficiency Role of Smart Grids in Energy Management • Integration of IoT Devices for Enhanced Efficiency
0830 - 0930	<i>Energy Storage Solutions</i> <i>Technologies for Energy Storage</i> • <i>Benefits and Applications in District Cooling</i>
0930 - 0945	Break
0945 - 1130	Advanced Data Analytics for Energy Management Using Big Data and Analytics • Predictive Maintenance and Optimization
1130 - 1230	<i>Sustainability & Environmental Impact</i> <i>Reducing Carbon Footprint</i> • <i>Role of Energy Efficiency in Sustainability</i>
1230 – 1245	Break
1245 - 1345	Regulatory Compliance & Standards Understanding Energy Efficiency Regulations • Ensuring Compliance with Local and International Standards
1345 - 1400	<i>Course Conclusion</i> Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 - 1415	POST TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

EE0697 - Page 7 of 8

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

<u>Course Coordinator</u> Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

EE0697 - Page 8 of 8

EE0697-07-25|Rev.01|28 January 2025

