

COURSE OVERVIEW DE0532 Drill Cuttings Description and Quality Control

Course Title

Drill Cuttings Description and Quality Control

Course Date/Venue

Session 1: July 20-24, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE Session 2: December 22-26, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

CEUS

Course Reference

DE0532

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Drill Cuttings Description and Quality Control. It covers the formation of drill cuttings and the role of drill cuttings in geological interpretation; the basics of drilling and mud circulation; the drill cuttings recovery and handling, proper labeling and storage of cuttings samples; the drying and sieving procedures and best practices for sample preservation; the basic geological principles in cuttings analysis; and the safety and quality control in cuttings handling.

Further, the course will also discuss the identification of lithologies through color, texture, and grain size; the factors affecting the appearance of cuttings and artificial contamination in samples; the classification of lithological cuttings, mineralogical composition of cuttings and cuttings texture and sorting; the hardness and porosity estimation and fluorescence and hydrocarbon indicators in cuttings; and the thin section and petrographic analysis, x-ray diffraction (XRD) for mineralogical analysis and x-ray fluorescence (XRF) for geochemical analysis.

DE0532- Page 1 of 9

During this interactive course, participants will learn the scanning electron microscopy (SEM) in cuttings analysis, mud logging techniques for cuttings evaluation and geochemical and thermal maturity analysis; integrating cuttings data with wireline logs and cuttings contamination and quality control; the cuttings-based reservoir evaluation, drilling-related artifacts and advances in automated cuttings analysis; the proper reporting and documentation of cuttings analysis; and providing unknown cuttings samples for analysis.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on drill cuttings description and quality control
- Discuss the formation of drill cuttings and the role of drill cuttings in geological interpretation
- Explain the basics of drilling and mud circulation and apply drill cuttings recovery and handling
- Carryout proper labeling and storage of cuttings samples, drying and sieving procedures and best practices for sample preservation
- Discuss the basic geological principles in cuttings analysis and apply safety and quality control in cuttings handling
- Identify lithologies through color, texture, and grain size, factors affecting the appearance of cuttings and artificial contamination in samples
- Classify lithological cuttings, mineralogical composition of cuttings and cuttings texture and sorting
- Apply hardness and porosity estimation and identify fluorescence and hydrocarbon indicators in cuttings
- Carryout thin section and petrographic analysis, x-ray diffraction (XRD) for mineralogical analysis and x-ray fluorescence (XRF) for geochemical analysis
- Apply scanning electron microscopy (SEM) in cuttings analysis, mud logging techniques for cuttings evaluation and geochemical and thermal maturity analysis
- Integrate cuttings data with wireline logs and apply cuttings contamination and quality control
- Employ cuttings-based reservoir evaluation, identifying drilling-related artifacts and advances in automated cuttings analysis
- Prepare proper reporting and documentation of cuttings analysis and provide unknown cuttings samples for analysis

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet **PC**.

DE0532- Page 2 of 9

Who Should Attend

This course provides an overview of all significant aspects and considerations of drill cuttings description and quality control for geologists and geoscientists, petroleum engineers, mud loggers, geotechnical engineers, oil and gas industry professionals and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

- ******
- British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

<u>ACCREDITED</u>
<u>The International Accreditors for Continuing Education and Training</u>
<u>(IACET - USA)</u>

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

DE0532- Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Chris Kapetan, PhD, MSc, is a Senior Petroleum Engineer with over 30 years of international experience within the onshore and offshore oil & gas industry. His wide experience covers Asset Management Principles, Risks & Economics, Petroleum Economics, Decision Analytic Modelling Methods for Economic Evaluation, Probabilistic Risk Analysis (Monte Carlo Simulator) Risk Analysis Foundations, Global Oil Demand, Crude Oil Market, Global Oil Reserves, Oil Supply & Demand, Governmental Legislation, Contractual Agreements, Financial Modeling, Oil Contracts, Project Risk Analysis, Feasibility Analysis Techniques, Capital Operational Costs, Oil & Gas Exploration Methods, Reservoir Evaluation, Extraction

of Oil & Gas, Crude Oil Types & Specifications, Sulphur, Sour Natural Gas, Natural Gas Sweeting, Petroleum Production, Field Layout, Production Techniques & Control, Surface Production Operations, Oil Processing, Oil Transportation-Methods, Flowmetering & Custody Transfer and Oil Refinery. Further, he is also well-versed in Enhanced Oil Recovery (EOR), Electrical Submersible Pumps (ESP), Oil Industries Orientation, Geophysics, Cased Hole Formation Evaluation, Cased Hole Applications, Cased Hole Logs, Production Operations, Production Management, Perforating Methods & Design, Perforating Operations, Fishing Operations, Well & Reservoir Testing, Reservoir Stimulation, Hydraulic Fracturing, Carbonate Acidizing, Sandstone Acidizing, Drilling Fluids Technology, Drilling Operations, Directional Drilling, Artificial Lift, Gas Lift Design, Gas Lift Operations, Petroleum Business, Field Development Planning, Gas Lift Valve Changing & Installation, Well Completion Design & Operation, Well Surveillance, Well Testing, Well Stimulation & Control and Workover Planning, Completions & Workover, Rig Sizing, Hole Cleaning & Logging, Well Completion, Servicing and Work-Over Operations, Practical Reservoir Engineering, X-mas Tree & Wellhead Operations, Maintenance & Testing, Advanced Petrophysics/Interpretation of Well Composite, Construction Integrity & Completion, Coiled Tubing Technology, Corrosion Control, Slickline, Wireline & Coil Tubing, Pipeline Pigging, Corrosion Monitoring, Cathodic Protection as well as Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Gas Conditioning & Process Technology, Production Safety and Delusion of Asphalt. Currently, he is the Operations Consultant & the Technical Advisor at GEOTECH and an independent Drilling Operations Consultant of various engineering services providers to the international clients as he offers his expertise in many areas of the drilling & petroleum discipline and is well recognized & respected for his process and procedural expertise as well as ongoing participation, interest and experience in continuing to promote technology to producers around the world.

Throughout his long career life, Dr. Chris has worked for many international companies and has spent several years managing technically complex wellbore interventions in both drilling & servicing. He is a well-regarded for his process and procedural expertise. Further, he was the Operations Manager at ETP Crude Oil Pipeline Services where he was fully responsible for optimum operations of crude oil pipeline, workover and directional drilling, drilling rigs and equipment, drilling of various geothermal deep wells and exploration wells. Dr. Chris was the Drilling & Workover Manager & Superintendent for Kavala Oil wherein he was responsible for supervision of drilling operations and offshore exploration, quality control of performance of rigs, coiled tubing, crude oil transportation via pipeline and abandonment of well as per the API requirements. He had occupied various key positions as the Drilling Operations Consultant, Site Manager, Branch Manager, Senior Drilling & Workover Manager & Engineer and Drilling & Workover Engineer, Operations Consultant, Technical Advisor in several petroleum companies responsible mainly on an offshore sour oil field (under water flood and gas lift) and a gas field. Further, Dr. Chris has been a Professor of the Oil Technology College.

Dr. Chris has PhD in Reservoir Engineering and a Master's degree in Drilling & Production Engineering from the Petrol-Gaze Din Ploiesti University. Further, he is a Certified Surfaced BOP Stack Supervisor of IWCF, a Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier by the Institute of Leadership & Management (ILM) and has conducted numerous short courses, seminars and workshops and has published several technical books on Production Logging, Safety Drilling Rigs and Oil Reservoir.

DE0532- Page 4 of 9

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 8,000 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I		
0730 – 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
0830 - 0930	<i>Introduction to Drill Cuttings</i> Definition and Formation of Drill Cuttings • The Role of Drill Cuttings in Geological Interpretation • Drill Cuttings vs. Core Samples • Challenges in Cuttings Analysis	
0930 - 0945	Break	
0945 - 1030	Basics of Drilling & Mud Circulation Overview of Drilling Processes and Drill Bit Types • How Mud Circulation Affects Cuttings Transportation • Impact of Drilling Parameters on Cuttings Quality • Contamination Risks in Drilling Fluids	
1030 - 1130	Drill Cuttings Recovery & Handling Cuttings Retrieval Methods at the Shale Shaker • Factors Affecting Cuttings Recovery Rate • Cuttings Washing and Handling Techniques • Common Issues with Cuttings Contamination	
1130 – 1215	Sample Preparation for Description Proper Labeling and Storage of Cuttings Samples • Drying and Sieving Procedures • Best Practices for Sample Preservation • Importance of Representative Sampling	
1215 – 1230	Break	

DE0532- Page 5 of 9

	Basic Geological Principles in Cuttings Analysis
1230 - 1330	Fundamentals of Rock Classification • Depositional Environments and
	Lithology Indicators • The Role of Mineralogy in Formation Evaluation •
	Understanding Formation Tops Using Cuttings
	Safety & Quality Control in Cuttings Handling
1330 - 1420	Personal Protective Equipment (PPE) for Sample Handling • Health Hazards
	Associated with Drill Cuttings • Preventing Cross-Contamination in Cuttings
	Handling • Best Practices for Quality Assurance in Cuttings Analysis
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830	Visual Description of Cuttings
	Identifying Lithologies Through Color, Texture, and Grain Size • Factors
0750 - 0850	Affecting the Appearance of Cuttings • Recognizing Artificial Contamination
	in Samples • Using Color Charts and Comparison Tools
	Lithological Classification of Cuttings
0020 0020	Clastic vs. Non-Clastic Rock Types • Differentiating Shale, Sandstone, and
0830 - 0930	Carbonate Cuttings • Recognition of Hydrocarbon-Bearing Formations •
	Lithology Classification Schemes and Terminology
0930 - 0945	Break
	Mineralogical Composition of Cuttings
0045 1100	Common Minerals Found in Cuttings Samples • Carbonate vs. Silicate Content
0945 – 1100	Analysis • Methods for Identifying Mineral Grains in Cuttings • Indicators of
	Reservoir Quality Minerals
	Cuttings Texture & Sorting
1100 1015	The Significance of Grain Shape and Roundness • Sorting and Its Geological
1100 – 1215	Implications • Matrix and Cementation in Cuttings Samples • Estimating
	Depositional Energy from Cuttings
1215 - 1230	Break
	Hardness & Porosity Estimation
1000 1000	Field Tests for Cuttings Hardness (Scratch and Crush Tests) • Porosity
1230 – 1330	Indicators in Different Lithologies • The Role of Cementation in Porosity
	Reduction • How Diagenesis Affects Porosity Preservation
	Fluorescence & Hydrocarbon Indicators in Cuttings
1220 1420	Understanding Fluorescence Tests in Cuttings • Recognition of Hydrocarbon
1330 – 1420	Staining in Cuttings • Use of UV Light in Hydrocarbon Detection •
	Interpretation of Cut Fluorescence Intensity and Color
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

DE0532- Page 6 of 9

Day 3

	Thin Section & Petrographic Analysis
0730 - 0830	Preparing Thin Sections from Drill Cuttings • Optical Microscopy for Mineral
	and Texture Identification • Use of Polarized Light in Mineral Classification •
	Interpreting Diagenetic Features in Thin Sections
	X-Ray Diffraction (XRD) for Mineralogical Analysis
0830 - 0930	Principles of XRD and Its Applications in Cuttings Analysis • Sample
	Preparation for XRD Analysis • Interpreting XRD Diffraction Patterns •
	Limitations of XRD in Drill Cuttings Assessment
0930 - 0945	Break
	X-Ray Fluorescence (XRF) for Geochemical Analysis
0945 - 1100	The Importance of Elemental Analysis in Cuttings • XRF Instrumentation and
0945 - 1100	Sample Preparation • Interpreting Major and Trace Element Results •
	Identifying Source Rock Potential with XRF
	Scanning Electron Microscopy (SEM) in Cuttings Analysis
1100 – 1215	High-Resolution Imaging of Cuttings Samples • SEM-EDS for Elemental
1100 - 1215	Composition Analysis • Identifying Pore Structure and Diagenetic Features •
	Advantages of SEM Over Optical Microscopy
1215 – 1230	Break
	Mud Logging Techniques for Cuttings Evaluation
1230 - 1330	Basics of Mud Logging and Real-Time Cuttings Monitoring • Gas Detection
1250 - 1550	and Mud Gas Chromatography • Cuttings Lag Time and Depth Correction •
	Integration of Cuttings Data with Drilling Parameters
	Geochemical & Thermal Maturity Analysis
1330 - 1420	TOC (Total Organic Carbon) and Its Significance • Rock-Eval Pyrolysis for
	Source Rock Evaluation • Vitrinite Reflectance as a Thermal Maturity
	Indicator • Geochemical Signatures of Reservoir Rocks
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
1.000	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

Day 4	
	Integration of Cuttings Data with Wireline Logs
0730 - 0830	Comparing Cuttings Descriptions with Gamma-Ray Logs • Calibrating
	Cuttings Lithology with Density and Neutron Logs • Identifying
	Miscorrelation Issues in Cuttings-Log Integration • Using Resistivity Logs to
	Validate Cuttings Analysis
	Cuttings Contamination & Quality Control
0830 - 0930	Common Sources of Contamination in Cuttings • How Drilling Mud Affects
	Cuttings Quality • Verifying Cuttings Integrity Before Analysis • Best
	Practices for Preventing Contamination
0930 - 0945	Break
0945 - 1100	Cuttings-Based Reservoir Evaluation
	Indicators of Reservoir Quality in Cuttings • How Permeability and Porosity
	Affect Reservoir Potential • Recognizing Diagenetic Alterations in Reservoir
	Rocks • Relationship Between Cuttings Properties and Reservoir Performance
1100 – 1215	Identifying Drilling-Related Artifacts
	Recognizing Bit-Induced Changes in Cuttings • Mud Additives and Their
	Impact on Cuttings Description • Effects of Drilling Rate on Cuttings
	Fragmentation • How Overpressure Affects Cuttings Quality

DE0532- Page 7 of 9

1215 - 1230	Break
1230 - 1330	Advances in Automated Cuttings Analysis AI and Machine Learning in Cuttings Classification • Automated Mineral
	<i>Identification Techniques</i> • <i>Digital Imaging and Texture Analysis</i> • <i>Benefits and Challenges of Automation in Cuttings Analysis</i>
1330 – 1420	Reporting & Documentation of Cuttings Analysis
	Standard Formats for Cuttings Description Reports • Importance of Accurate
	Depth Calibration • Documenting Key Observations and Uncertainties • Best
	Practices for Data Storage and Retrieval
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 - 0930 <i>Case Studies of Drill Cuttings Analysis</i> <i>Lessons from Successful Cuttings-Based In</i> <i>Validation in Exploration Wells</i> • <i>Cuttings</i>	nterpretations • Cuttings Data
	nterpretations • Cuttings Data
Validation in Exploration Wells • Cuttings	
Reservoirs • Examples of Misinterpretations a	and Their Consequences
0930 – 0945 Break	
Hands-On Drill Cuttings Description Pra	actice
0945 – 1100 Identifying and Describing Real Cuttings S	Samples • Group Discussions on
Sample Interpretations • Comparative Analys	sis with Core Samples • Practical
Application of Fluorescence and Hardness Tes	sts
Quality Control Exercises	
Analyzing Real versus Contaminated C	Cuttings Samples • Verifying
1100 – 1215 Consistency in Cuttings Descriptions	Error Analysis in Cuttings
Classification • Team-Based QC Evaluations	5 0
1215 – 1230 Break	
Interpretation Challenge – Mystery Samp	oles
1230 – 1345 Providing Unknown Cuttings Samples for A	Analysis • Participants Describe,
Classify and Interpret Data • Group Pres	sentations of Findings • Expert
Review and Feedback	
Course Conclusion	
1330 – 1345 Using this Course Overview, the Instructor	r(s) will Brief Participants about i
Topics that were Covered During the Course	
1400 – 1415 POST-TEST	
1415 – 1430 Presentation of Course Certificates	
1430 Lunch & End of Course	

DE0532- Page 8 of 9

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE0532- Page 9 of 9

