

COURSE OVERVIEW DE0012 Rock Physics for Exploration

Course Title

Rock Physics for Exploration

Course Date/Venue

Session 1: April 28- May 02, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Session 2: July 27-31, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

DE0012

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of applied rock physics. It covers the difference between rock physics and petrophysics; the concept of the representative elementary volume (REV) and effective elastic properties; the Voight/Reuss and Hashin-Shtrikman bounds, modulus-porosity relations for clean sands, critical porosity and mechanical percolation; and the Gasman's equations, fluid substitution, fluid properties, mixtures and diagenetic and sorting trends in velocity-porosity data.

Further, the course will also discuss the velocity-porosity models for shaly sands; the empirical relations between velocity and prosity, clay content, etc; the properties of sand-clay mixtures, velocity-porosity relations for shales, relations between Vp and Vs, rock compressibilities and relation of 4D seismic to well testing, reflection coefficients and AVO; the elastic impedance, rock physics templates and the effective medium and field theories; the velocity-porosity relations for carbonates; and the biot theory, patchy saturation, squirt flow, sediment compaction and the state of stress in the earth.

DE0012 - Page 1 of 8.

During this interactive course, participants will learn the pore pressure and the concept of effective stress, poroelasticity and application to pore pressure prediction; the fractured gradient and 3D stress modeling; the effect of stress on seismic body waves and third order elasticity; the granular media and discrete element methods, displacement discontinuity methods, stress sensitivity of sandstones, shales and stress perturbations around a borehole; the determination of velocity variations around a borehole from advanced sonic logging; the wellbore stability and reservoirs geomechanics and stress effects in 4D seismic monitoring; the fractured reservoirs, hydraulic fracture propagation in presence of natural fractures; the seismic characterization of fractures reservoirs; the response of a fractures reservoir, rockphysics models for fractures, shales and unconventional reservoir and anisotrophy of shales; the effect of anisotropy on AVO and microseismic; and the effect of azimuthal anisotropy on propagation of hydraulic fractures.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- · Apply and gain an in-depth knowledge on applied rock physics
- Discuss Hooke's law, anisotropy and elastic wave velocities including sedimentary rocks as heterogenous media
- Explain the concept of the representative elementary volume (REV) and effective elastic properties
- Identify Voigt/Reuss and Hashin-Shtrikman bounds, modulus-porosity relations for clean sands, critical porosity and mechanical percolation
- Discuss Gassman's equations and fluid substitution, fluid properties, mixtures and diagenetic and sorting trends in velocity-porosity data
- Describe velocity-porosity models for shaly sands and the empirical relations between velocity and prosity, clay content, etc
- Recognize the properties of sand-clay mixtures, velocity-porosity relations for shales, relations between Vp and Vs, rock compressibility's and relation of 4D seismic to well testing, reflection coefficients and AVO
- Identify elastic impedance, rock physics templates, the effective medium and field theories including the velocity-porosity relations for carbonates
- Explain biot theory, patchy saturation, squirt flow, sediment compaction and the state of stress in the earth as well as pore pressure and the concept of effective stress, poroelasticity and application to pore pressure prediction
- Illustrate fracture gradient and 3D stress modeling as well as recognize the effect of stress on seismic body waves and third order elasticity
- Apply granular media and discrete element methods and displacement discontinuity methods
- Discuss stress sensitivity of sandstones, shales and stress perturbations around a borehole
- Determine velocity variations around a borehole from advanced sonic logging

- Apply wellbore stability, reservoirs geomechanics and stress effects in 4D seismic monitoring
- Identify fractured reservoirs, Hydraulic fracture propagation in presence of natural fractures and seismic characterization of fractures reservoirs
- Model the response of fractures reservoir and describe rockphysics models for fractures, shales and unconventional reservoir and anisotrophy of shales
- Analyze the effect of anisotropy on AVO including the microseismic and effect of azimuthal anisotropy on propagation of hydraulic fractures

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of capillary pressure, saturation height function and rock fluids proprieties for petrophysicist, geologists, geophysicist, reservoir and production engineers and other involved information evaluation and/or reservoir modelling are the target audience. People who work with selection and application of core test data for analyses and/or use hydrocarbon saturations in their models will find this course considerable benefit.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 8,000 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Stan Constantino, MSc, BSc, is a Senior Petroleum & Reservoir Engineer with over 40 years of Offshore & Onshore extensive experience within the Oil, Gas & Petroleum industries. His area of expertise include Cased Hole Logging, Advanced Petrophysics/Interpretation of Cased Hole Logs, Cased Hole Formation Evaluation, Cased Hole Formation Evaluation, Cased Hole Evaluation, Cased-Hole Logging, Applied Production Logging & Cased Hole & Production Log Evaluation, Cased Hole Logging & Formation Evaluation, Open & Cased Hole Logging, Fractured Reservoir Classification & Evaluation, Screening of Oil Reservoirs for Enhanced Oil Recovery, Oil Reservoir

Evaluation & Estimation, Reserves & Resources, Reserves Estimation & Uncertainty, Reserve Evaluation, OIP Estimation & Range of Uncertainty, Reservoir Characterization, Water Flooding, Reservoir Souring & Water Breakthrough, Reservoir Performance Using Classical Methods, Fractured Reservoir Evaluation & Management, Reservoir Surveillance & Management, Reservoir Engineering & Simulation, Reservoir Monitoring, Pressure Transient Testing & Reservoir Performance Evaluation, Reservoir Characterization, Reservoir Engineering Applications with ESP & Heavy Oil, Reservoir Volumetrics, Water Drive Reservoir, Unconventional Resource & Reserves Evaluation, Oil & Gas Reserves Estimation, Petrophysics & Rock Properties, Seismic Technology, Geological Modelling, Water Saturation, Crude Oil & Natural Gas Demand, Exploration Agreements & Financial Modelling, Seismic Survey Evaluation, Exploration Well Identification, Field Production Operation, Field Development Evaluation, Crude Oil Marketing, Core & Log Data Integration, Core Logging, Advanced Core & Log Integration, Well Logs & Core Analysis, Enhanced Oil Recovery, Enhanced Oil Recovery Techniques, Petroleum Economic Analysis, Oil Industry Orientation, Oil Production & Refining, Crude Oil Market, Global Oil Supply & Demand, Global Oil Reserves, Crude Oil Types & Specifications, Oil Processing, Oil Transportation-Methods, Oil & Gas Exploration and Methods, Oil & Gas Extraction, Technology Usage in Industrial Security; Upstream, Midstream & Downstream Operations; Oil Supply & Demand, Oil Contracts, Government Legislation & Oil Contractual Agreements, Oil Projects & Their Feasibility (revenue and profitability), Rock & Fluid Properties, Fluid Flow Mechanics, PVT Analysis, Material Balance, Darcy's Law & Applications, Radial Flow, Gas Well Testing, Natural Water Influx, EOR Methods, Directional Drilling, Drilling Production & Operations, Field Development & Production of Oil & Gas, Wireline Logging, Mud Logging, Production Logging, Slick Line, Coil Tubing, Exploration Wells Evaluation, Horizontal Wells, Well Surveillance, Well Testing, Design & Analysis, Well Testing & Oil Well Performance, Well Log Interpretation (WLI), Formation Evaluation, Well Workover Supervision, Pressure Transient Analysis and Petrophysical Log Analysis. Currently, he is the CEO & Managing Director of Geo Resources Technology wherein he is responsible in managing the services and providing technical supports to underground energy related projects concerning field development, production, drilling, reservoir engineering and simulation.

Throughout his long career life, Mr. Stan has worked for many international companies such as the Kavala Oil, North Aegean Petroleum Company and Texaco Inc., as the Managing Director, Operations Manager, Technical Trainer, Training Consultant, Petroleum Engineering & Exploration Department Head, Assistant Chief Petroleum Engineer, Reservoir Engineer, Resident Petroleum Engineer, Senior Petroleum Engineer and Petroleum Engineer wherein he has been managing the evaluation of exploration wells, reservoir simulation, development training, production monitoring, wireline logging and well testing including selection and field application of well completion methods.

Mr. Stan has a Master's degree in Petroleum Engineering and a Bachelor's degree in Geology from the New Mexico Institute of Mining & Technology (USA) and from the Aristotelian University (Greece) respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership of Management (ILM) and a member of the Society of Petroleum Engineers, USA (SPE), Society of Well Log Professional Analysts, USA (SPWLA) and European Association of Petroleum Geoscientists & Engineers (EAGE). Moreover, Mr. Stan published numerous scientific and technical papers and delivered various trainings, courses and workshops worldwide.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	Introduction to Applied Rock Physics
0900 - 0930	Hooke's Law, Anisotropy & Elastic Wave Velocities
0930 - 0945	Break
0945 - 1030	Sedimentary Rocks as Heterogeneous Media
1030 - 1100	The Concept of the Representative Elementary Volume (REV) &
1030 - 1100	Effective Elastic Properties
1100 - 1200	Voigt/Reuss & Hashin-Shtrikman Bounds
1200 - 1230	Modulus-Porosity Relations for Clean Sands
1215 - 1230	Break
1230 - 1300	Critical Porosity & Mechanical Percolation
1300 - 1300	Gassman's Equations & Fluid Substitution
1330 - 1400	Fluid Properties & Mixtures
1400 - 1420	Diagenetic & Sorting Trends in Velocity-Porosity Data
1420 - 1430	Recap
1430	Lunch & End of Day One

Dav 2

0730 - 0830	Velocity-Porosity Models for Shaly Sands
0830 - 0930	Empirical Relations Between Velocity & Porosity, Clay Content, etc
0930 - 0945	Break
0945 - 1030	Properties of Sand-Clay Mixtures
1030 - 1100	Velocity-Porosity Relations for Shales
1100 - 1200	Relations Between Vp & Vs
1200 - 1230	Rock Compressibility's & Relation of 4D Seismic to Well Testing
1215 - 1230	Break
1230 - 1300	Reflection Coefficients & AVO
1300 - 1300	Elastic Impedance
1330 - 1400	Rock Physics Templates
1400 - 1420	Effective Medium & Effective Field Theories
1420 - 1430	Recap
1430	Lunch & End of Day Two

Dav 3

, ·	
0730 - 0830	Velocity-Porosity Relations for Carbonates
0830 - 0930	Biot Theory
0930 - 0945	Break
0945 - 1030	Patchy Saturation
1030 - 1100	Squirt Flow
1100 - 1200	Sediment Compaction & State of Stress in the Earth

1200 - 1230	Pore Pressure & Concept of Effective Stress
1215 - 1230	Break
1230 - 1300	Poroelasticity
1300 - 1300	Application to Pore Prediction
1330 - 1400	Fracture Gradient & 3D Stress Modeling
1400 - 1420	Effect of Stress on Seismic Body Waves
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

Duy +	
0730 - 0830	Third-Order Elasticity
0830 - 0930	Granular Media & Discrete Element Methods
0930 - 0945	Break
0945 - 1030	Displacement Discontinuity Methods
1030 - 1100	Stress Sensitivity of Sandstones
1100 - 1200	Stress Sensitivity of Shales
1200 - 1230	Stress Perturbations Around a Borehole
1215 - 1230	Break
1230 - 1300	Determination of Velocity Variations Around a Borehole from
	Advanced Sonic Logging
1300 - 1300	Application to Wellbore Stability
1330 - 1400	Reservoir Geomechanics & Stress Effects in 4D Seismic Monitoring
1400 - 1420	Fractured Reservoirs
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

Day 5	
0730 - 0830	Hydraulic Fracture Propagation in Presence of Natural Fractures
0830 - 0930	Seismic Characterization of Fractured Reservoirs
0930 - 0945	Break
0945 - 1030	Modeling the Response of Fractured Reservoir
1030 - 1100	Rock Physics Models for Fractures
1100 - 1200	Shales & Unconventional Reservoirs
1200 - 1230	Anisotropy of Shales
1215 - 1230	Break
1230 - 1300	Rock Physics Modeling of Kerogen in Organic-Rich Shales
1300 - 1300	Effect of Anisotropy on AVO
1330 - 1345	Micro seismic & Effect of Azimuthal Anisotropy on Propagation of
	Hydraulic Fractures
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

