

COURSE OVERVIEW PE0446 Process Design and Management

Course Title

Process Design and Management

Course Date/Venue

Session 1: August 03-07, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: December 08-12, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

PE0446

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

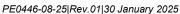
Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and intermediate overview of Process Design. It covers the process design standards and protocols and the importance of adhering to these standards in process design; the types of documents used in process design and technical specifications; the methods for collecting and verifying data necessary for design; the basic concepts of pump performance curves and NPSH including compressor operations and performance factors; the principles of desalters and dehydrators and relief and flare systems; the orifice and control valve calculations; and the techniques for appropriate safety valve sizing and heavy oil processing systems.

During this interactive course, participants will learn how to calculate pressure drops in oil, gas and injection networks; the thermodynamic calculations for hydrate formation; the compressor discharge temperature calculations; the steps for creating comprehensive process design packages; the produced water treatment technologies, tank design and fluid handling; the principles and design considerations for micro bubble flotation technology and seawater treatment technologies; the technical specification documents and drawing verification; the enhanced oil recovery and improved oil recovery methods; the subsurface reservoir behaviors, offshore operations and challenges; and techniques and strategies for troubleshooting process design problems.

PE0446 - Page 1 of 9



Course Objectives

At the end of this course, the Trainee will be able to:-

- Apply and gain a good working knowledge on process design
- Explain the importance of performing process design using industry and international standards
- Describe and analyse process design documents and specifications
- Collect and verify data required for process design calculations
- Perform calculations for pump performance curves, NPSN, desalter and dehydrator, relief and flare systems, compressors, orifice and control valves, safety valve sizing, etc.
- Perform calculation for Heave Oil processing system sizing/design of process equipment and piping
- Calculate pressure drops in oil and gas network, injection network, hydrate formation and compressor discharge temperature based on gas composition
- Provide technical support in resolving process design problems
- Describe steps for developing process design packages and technical specification documents
- Verify technical viability of drawings and specification documents such as equipment data sheets etc.
- Understanding of the EOR-IOR methods (introduction, design of equipment, troubleshooting, including type of polymers)
- Understanding of produced water treatment technologies (primary, secondary, tertiary) stages etc.) design basics
- Understanding of tanks (gravity, multi-phase fluid handling (wet/dual tanks) design basics
- Understanding of water treatment micro bubble flotation etc.) design basics
- Understanding of sea water treatment technologies and design basics
- Recognize the basics on sub-surface reservoir behaviors such as challenges associated with producer well fluid, injection water reservoir characteristics
- Discuss the basics on off-shore operations and challenges
- Discuss the process design standards and protocols and the importance of adhering to these standards in process design
- Identify the types of documents used in process design as well as analyze and interpret technical specifications
- Collect and verify data necessary for design using proper methods
- Recognize the basic concepts of pump performance curves and NPSH including compressor operations and performance factors
- Discuss the principles of separation and extraction as well as calculate and optimize performance for desalters and dehydrators
- Design principles for relief and flare systems as well as carryout orifice and control valve calculations

- Apply systematic techniques for appropriate safety valve sizing
- Carryout designing and sizing of equipment specific to heavy oil processing
- Calculate pressure drops in oil, gas and injection networks
- Understand thermodynamic calculations for hydrate formation and compressor discharge temperature calculations
- Develop steps for creating comprehensive process design packages
- Design and operate primary, secondary and tertiary water treatment stages
- Design the basics for gravity and multi-phase fluid handling tanks for the oil and gas industry
- Apply principles and design considerations for micro bubble flotation technology and seawater treatment technologies
- Ensure technical viability of designs and verify drawings and specification documents
- Employ enhanced oil recovery and improved oil recovery methods
- Understand subsurface reservoir behaviors as well as offshore operations and challenges
- Carryout proper techniques and strategies for troubleshooting process design problems

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an intermediate overview of all significant aspects and considerations of process design for process engineers engaged in the design of new process equipment and revamp of existing plants and who also in-charge of troubleshooting and maintaining of such equipment. The course is also recommended for mechanical, equipment and project engineers who wish to learn basic principles of process design and process equipment and who are willing to troubleshoot and maintain such equipment.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Robert Harvey, MSc (Cum Laude), BSc is a Senior Chemical Engineer with over 45 years of in-depth industrial experience within the Oil & Gas, Refinery, Petrochemical, Mining and Power industries. His expertise widely covers in the areas of Fertilizer Manufacturing Process Technology, Fertilizer Storage Management (Ammonia & Urea), Petrochemical & Fertilizer Plants, Nitrogen Fertilizer Production, Petroleum Industry Process Engineering, Process Equipment Design &

Troubleshooting, Process Equipment & Piping Systems, Fertilizer Manufacturing Process Technology, Production Management, Process Plant Optimization & Continuous Improvement, Revamping & Debottlenecking, Pressure Vessel Operation, Heat Mass Balance, Distillation-Column Operation, & Troubleshooting, Production Process Optimization, Debottlenecking, Unit Performance Optimization, Process Analyzers, Real Time Online Optimization, Operations Planning Optimization, Engineering Problem Solving, Bag Filters Operation & Maintenance, Process Equipment Design, Chemical Reaction Engineering Application, Phosphatic Industry, Diammonium Phosphate, Monoammonium Phosphate, NPK, Troubleshooting Improvement, Production Management, **Distillation-Column** Operation Troubleshooting, Vinyl Chloride Monomer (VCM) Manufacturing & Process Troubleshooting, Monomer Handling Safety, Cement Manufacturing Process Technology & Standards, Complex Operational Troubleshooting, Incident Root Cause Analysis & Corrective Action, Process Equipment & Piping System, Fertilizer Manufacturing, Process Plant Optimization & Continuous Improvement, Process Plant Performance & Efficiency, Continuous Improvement & Benchmarking, Energy Efficiency for Process Plants, Pressure Vessel Operation, Reactors & Storage Tanks, Dehydrating Columns, Heat & Material Balance, Troubleshooting Process Operations, Modern Aluminium Production Processes, Cement Kiln Process, Process Engineer Calculations, Steel Making Process, P&ID Reading & Interpretation, Detailed Engineering Design, Process Diagrams Review, Process Hazard Analysis (PHA), HAZOP Leadership, Project HSE Review (PHSER), Safe Handling of Propylene Oxide & Ethylene Oxide, Safety in Process & Industrial Plants, Environmental Impact Assessment (EIA) and Effective Risk Assessment & HAZOP Studies. Further, he is also well versed in Feasibility Studies Analysis & Evaluation, Project Gate System Procedures, Process Mapping, Change Management Skills, Change Management Strategy, Strategical Process Control in Process Industry, Developing Commercial Contracts, Project Management Skills, Project Scheduling & Cost Control, FIDIC & Other Model Contracts, EPC & EPCM Contracts, Knowledge Management, Job Evaluation, Creative Problems Solving & Innovation Skills, Problem Solving & Decision Making, Strategic Planning & Creative Thinking and Mind

During his career life, Mr. Harvey has gained his practical and field experience through his various significant positions and dedication as the Commercial Director, Manufacturing Director, Chief Operating Officer, Head Projects Division, Project Leader, Lead Technical Advisor/Consultant and Project Consultant to various international companies such as the Trade and Industrial Policy Strategies (TIPS), PGBI Johannesburg, IDC Green Industries SBU/Arengo 316 Pty Ltd, Ferrum Crescent Limited, CEF Limited, Rio Tinto Alcan, Industrial Development Corporation of SA (IDC) and AECI Limited.

Mr. Harvey has Master's (Cum Laude) and Bachelor's degrees in Chemical Engineering. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and has delivered various trainings, seminars, conferences, workshops and courses globally.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0745	Registration & Coffee
0745 - 0800	Welcome & Introduction
0800 - 0815	PRE-TEST
	Overview of Process Design Standards & Protocols
0815 - 0915	Introduction to Industry and International Standards • Importance of
	Adhering to these Standards in Process Design
0915 - 0930	Break
	Process Design Documents & Specifications
0930 - 1030	Types of Documents Used in Process Design • Analyzing and Interpreting
	Technical Specifications
	Data Collection & Verification
1030 - 1100	Methods for Collecting and Verifying Data Necessary for Design • Utilizing
	Software Tools for Data Management
	Pump & Compressor Systems
1100 - 1145	Basic Concepts of Pump Performance Curves and NPSH • Overview of
	Compressor Operations and Performance Factors
1145 - 1200	Break
	Desalter & Dehydrator Design
1200 - 1300	Principles of Separation and Extraction • Calculating and Optimizing
	Performance for Desalters and Dehydrators
	Desalter & Dehydrator Design (cont'd)
1300 - 1420	Principles of Separation and Extraction • Calculating and Optimizing
	Performance for Desalters and Dehydrators
1420 - 1430	Recap
1430	Lunch & End of Day One
·	

Day 2

0730 - 0830	Safety Systems: Relief & Flare Systems Design Principles for Relief and Flare Systems • Sizing and Application in
	Upstream Operations
	Orifice & Control Valve Calculations
0830 - 0915	Theories and Calculations for Flow through Orifices • Sizing and Selecting
	Control Valves Based on Process Needs
0915 - 0930	Break
	Safety Valve Sizing & Management
0930 - 1100	Techniques for Appropriate Safety Valve Sizing • Considerations for
	Different Operating Conditions

	Heavy Oil Processing Systems
1100 - 1200	Design and Sizing of Equipment Specific to Heavy Oil Processing •
	Challenges and Solutions in Heavy Oil Environments
1200 - 1215	Break
	Pressure Drops in Networks
1215 - 1300	Calculating Pressure Drops in Oil, Gas and Injection Networks • Techniques
	to Minimize Pressure Losses and Improve Efficiency
	Pressure Drops in Networks (cont'd)
1300 - 1420	Calculating Pressure Drops in Oil, Gas and Injection Networks • Techniques
	to Minimize Pressure Losses and Improve Efficiency
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

Day 3	
	Thermodynamic Calculations for Hydrate Formation
0730 - 0830	Understanding the Conditions for Hydrate Formation • Preventative
	Measures and Design Considerations
	Compressor Discharge Temperature Calculations
0830 - 0915	Influence of Gas Composition on Discharge Temperatures • Practical
	Applications in Process Adjustments and Equipment Selection
0915 - 0930	Break
	Developing Process Design Packages
0930 - 1100	Steps for Creating Comprehensive Design Packages • Integration of
	Specifications and Operational Requirements
	Produced Water Treatment Technologies
1100 - 1200	Design and Operation of Primary, Secondary and Tertiary Treatment Stages
	Case Studies and Application in the Field
1200 - 1215	Break
	Tank Design & Fluid Handling
1215 - 1300	Design Basics for Gravity and Multi-Phase Fluid Handling Tanks •
	Challenges and Solutions in Tank Design for the Oil and Gas Industry
	Tank Design & Fluid Handling (cont'd)
1300 - 1420	Design Basics for Gravity and Multi-Phase Fluid Handling Tanks •
	Challenges and Solutions in Tank Design for the Oil and Gas Industry
1420 - 1430	Recap
1430	Lunch & End of Day Three

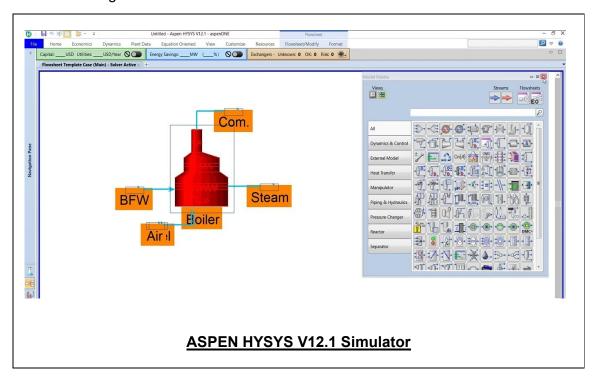
Day 4

Day +	
	Water Treatment: Micro Bubble Flotation
0730 - 0830	Principles and Design Considerations for Micro Bubble Flotation
	Technology • Applications in Separating Oil from Water
	Seawater Treatment Technologies
0830 - 0930	Introduction to Technologies for Treating Seawater for Industrial Use •
	Design Considerations and Challenges
0930 - 0945	Break
	Technical Specification Documents & Drawing Verification
0945 - 1100	Methods for Ensuring Technical Viability of Designs • Verification of
	Drawings and Specification Documents
	Basics of EOR-IOR Methods
1100 – 1215	Introduction to Enhanced oil Recovery and Improved Oil Recovery Methods
	Designing Equipment and Troubleshooting for EOR-IOR

1215 – 1230	Break
	Understanding Subsurface Reservoir Behaviors
1230 - 1315	Challenges Associated with Producer Well Fluids and Injection Water
	Characteristics • Approaches to Manage and Optimize Production
	Understanding Subsurface Reservoir Behaviors (cont'd)
1315 - 1420	Challenges Associated with Producer Well Fluids and Injection Water
	Characteristics • Approaches to Manage and Optimize Production
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

Offshore Operations & Challenges
Overview of Offshore Process Design and Operational Challenges •
Strategies to Mitigate Common Issues in Offshore Environments
Break
Offshore Operations & Challenges (cont'd)
Overview of Offshore Process Design and Operational Challenges •
Strategies to Mitigate Common Issues in Offshore Environments
Troubleshooting Process Design Problems
Techniques and Strategies for Identifying and Resolving Process Design
Issues • Case Studies and Practical Exercises
Troubleshooting Process Design Problems (cont'd)
Techniques and Strategies for Identifying and Resolving Process Design
Issues • Case Studies and Practical Exercises
Break
Review of Case Studies & Real-World Applications (cont'd)
Examination of Real-World Scenarios to Apply Learned Concepts •
Interactive Discussion and Problem-Solving Session
Course Conclusion
POST-TEST
Lunch & End of Course



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "ASPEN HYSYS" simulator.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

