

COURSE OVERVIEW PE0192 Hydroisomerization Unit Operation and Troubleshooting

Course Title

Hydroisomerization Unit Operation and Troubleshooting

Course Date/Venue

Session 1: August 25-29, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Session 2: November 02-06, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE CEUS (30 PDHs)

Course Reference

PE0192

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Hydroisomerization Unit Operation and Troubleshooting. It covers the purpose of hydroisomerization, feedstock characteristics and chemistry of hydroisomerization; the process configuration and variables; the hydroisomerization unit startup and steady-state operations; the role of hydrogen process management in the and heat in hydroisomerization; the separation systems, key control systems and operational issues; and the catalyst-related issues and hydrogen system troubleshooting.

During this interactive course, each participant will learn the causes of reactor overheating or underheating; addressing hot spots in reactors, managing heat exchanger fouling and diagnosing quench system malfunctions; assessing feedstock and product quality issues; the mechanical and equipment troubleshooting; improving process efficiency, maximizing product yields and data analytics in hydroisomerization; the feedstock and catalyst strategies; the environmental and safety considerations; the best practices for proactive maintenance; ensuring equipment reliability under varying loads; and scheduling catalyst inspections and replacements.

PE0192 - Page 1 of 8 PE0192-08-25|Rev.00|03 February 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on hydroisomerization unit operation and troubleshooting
- Discuss the purpose of hydroisomerization including feedstock characteristics
- Determine the chemistry of hydroisomerization, catalysts in hydroisomerization, process configuration and process variables and their impact
- Carryrout hydroisomerization unit startup and steady-state operations
- Define the role of hydrogen in the process and apply heat management in hydroisomerization
- Recognize separation systems, key control systems and operational issues
- Identify catalyst-related issues and apply hydrogen system troubleshooting
- List the causes of reactor overheating or underheating, address hot spots in reactors, manage heat exchanger fouling and diagnose quench system malfunctions
- Assess feedstock and product quality issues and apply mechanical and equipment troubleshooting
- Improve process efficiency, maximize product yields and review data analytics in hydroisomerization
- Employ feedstock and catalyst strategies and recognize environmental and safety considerations
- Apply best practices for proactive maintenance, ensure equipment reliability under varying loads and schedule catalyst inspections and replacements

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

The course covers systematic techniques and methodologies on the hydroisomerization unit operation and troubleshooting for project engineers/managers, production managers and supervisors, process engineers, plant operators, maintenance technicians, troubleshooting specialists, safety and environmental compliance officers, research & development (R&D) teams, consultants and quality control/assurance teams.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

PE0192 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• ******* * **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of book.

PE0192 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Hesham Abdou, PhD, MSc, BSc, is a Senior Drilling & Petroleum Engineer with over 35 years of integrated industrial and academic experience as a University Professor. His specialization widely covers in the areas of Drilling & Completion Technology, Directional Drilling, Horizontal & Sidetracking, Drilling Operation Management, Drilling & Production Equipment, ERD Drilling & Stuck Pipe Prevention, Natural & Artificial Flow Well Completion, Well Testing Procedures & Evaluation, Well Performance, Coiled Tubing Technology, Oil Recovery

Methods Enhancement, Well Integrity Management, Well Casing & Cementing, Acid Gas Removal, Heavy Oil Production & Treatment Techniques, Crude Oil Testing & Water Analysis, Crude Oil & Water Sampling Procedures, Equipment Handling Procedures, Crude & Vacuum Process Technology, Gas Conditioning & Processing, Cooling Towers Operation & Troubleshooting, Sucker Rod Pumping, ESP & Gas Lift, PCP & Jet Pump, Pigging Operations, Electric Submersible Pumps (ESP), Progressive Cavity Pumps (PCP), Water Flooding, Water Lift Pumps Troubleshooting, Water System Design & Installation, Water Networks Design Procedures, Water Pumping Process, Pipelines, Pumps, Turbines, Heat Exchangers, Separators, Heaters, Compressors, Storage Tanks, Valves Selection, Compressors, Tank & Tank Farms Operations & Performance, Oil & Gas Transportation, Oil & Gas Production Strategies, Artificial Lift Methods, Piping & Pumping Operations, Oil & Water Source Wells Restoration, Pump Performance Monitoring, Rotor Bearing Modelling, Hydraulic Repairs & Cylinders, Root Cause Analysis, Vibration & Condition Monitoring, Piping Stress Analysis, Amine Gas Sweetening & Sulfur Recovery, Heat & Mass Transfer and Fluid Mechanics.

During his career life, Dr. Hesham held significant positions and dedication as the **General** Manager, Petroleum Engineering Assistant General Manager, Workover Assistant General Manager, Workover Department Manager, Artificial Section Head, Oil & Gas Production Engineer and Senior Instructor/Lecturer from various companies and universities such as the Cairo University, Helwan University, British University in Egypt, Banha University and Agiba Petroleum Company.

Dr. Hesham has a **PhD** and **Master** degree in **Mechanical Power Engineering** and a **Bachelor** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** and a **Peer Reviewer**. Dr. Hesham is a member of Egyptian Engineering Syndicate and the Society of Petroleum Engineering. Moreover, he has published technical papers and journals and has delivered numerous trainings, workshops, courses, seminars and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

PE0192 - Page 4 of 8

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0930	Overview of Hydroisomerization Definition and Purpose of Hydroisomerization • Key Applications in Refining and Petrochemicals • Market Relevance and Product Specifications • Comparison with other Refining Processes
0930 - 0945	Break
0945 - 1045	Feedstock Characteristics Typical Feedstocks (Naphtha, Straight-Run Distillates, etc.) • Importance of Paraffinic Hydrocarbons • Impurities and their Impact (Sulfur, Nitrogen, Metals) • Pre-Treatment Requirements
1045 - 1130	<i>Chemistry of Hydroisomerization</i> Mechanisms: Skeletal Isomerization vs Cracking • Role of Hydrogen and Catalysts in Reaction • Impact of Temperature, Pressure, and Feed Composition • Desired Isomers and Product Yield Optimization
1130 - 1230	<i>Catalysts in Hydroisomerization</i> <i>Types of Catalysts (Platinum-Based, Zeolites, etc.)</i> • <i>Catalyst Performance and</i> <i>Selectivity</i> • <i>Catalyst Life Cycle and Deactivation Mechanisms</i> • <i>Handling and</i> <i>Regeneration of Catalysts</i>
1230 - 1245	Break
1245 - 1330	Process Configuration Single-Stage vs Dual-Stage Hydroisomerization • Reactor Configurations: Fixed Bed, Fluidized Bed • Overview of Process Equipment • Flow Diagram of a Typical Hydroisomerization Unit
1330 – 1420	Process Variables & Their Impact Temperature, Pressure, and Hydrogen-to-Hydrocarbon Ratio • Liquid Hourly Space Velocity (LHSV) Considerations • Effects of Process Deviations on Yield and Quality • Trade-Offs Between Operational Efficiency and Product Quality
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 – 0830	<i>Hydroisomerization Unit Startup</i> <i>Pre-startup Checks and Inspections</i> • <i>Catalyst Pre-Sulfiding and Activation</i> • <i>Ensuring Proper Feedstock Quality</i> • <i>Gradual Heat-Up and Pressurization</i> <i>Procedures</i>
0830 - 0930	Steady-State Operations Monitoring Critical Operating Parameters • Maintaining Hydrogen Purity and Pressure • Managing Heat Integration in the System • Ensuring Feed and Product Flow Consistency
0930 - 0945	Break

PE0192 - Page 5 of 8

0945 - 1100	Role of Hydrogen in the Process
	Hydrogen Supply Sources • Hydrogen Purification Techniques • Managing
	Hydrogen Consumption and Losses • Impact of Insufficient Hydrogen on the Process
	Heat Management in Hydroisomerization
1100 – 1230	Heat Exchangers and Reactor Temperature Control • Importance of Quench Systems
1100 - 1250	in Multi-Bed Reactors • Fouling Prevention in Heat Exchangers • Impact of
	Temperature Deviations on Product Quality
1230 - 1245	Break
	Separation Systems
1245 - 1330	Role of Stabilizers, Strippers, and Separators • Optimizing Fractionation Systems for
1245 - 1550	Product Separation • Managing Light-End and Heavy-End By-Products •
	Troubleshooting common issues in separation units
	Key Control Systems
1330 - 1420	Importance of Distributed Control Systems (DCS) • Alarms, Interlocks, and Safety
1550 - 1420	Features • Automated Control of Critical Parameters • Troubleshooting Control
	System Malfunctions
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3

	Identifying Operational Issues
0730 - 0830	Symptoms of Process Inefficiencies • Common Causes of Process Imbalances •
	<i>Establishing a Troubleshooting Workflow</i> • <i>Importance of Process Monitoring Tools</i>
0830 - 0930	Catalyst-Related Issues
	Catalyst Deactivation Mechanisms (Coking, Sintering, Poisoning) • Signs of
	Catalyst Fouling and Wear • Strategies for Improving Catalyst Life • Catalyst
	Changeout and Regeneration Procedures
0930 - 0945	Break
	Hydrogen System Troubleshooting
0945 - 1100	Insufficient Hydrogen Purity or Pressure • Hydrogen Compressor Issues and
0945 - 1100	Solutions • Hydrogen Recycles System Optimization • Minimizing Hydrogen
	Consumption
	Temperature & Heat Transfer Problems
1100 - 1230	Causes of Reactor Overheating or Underheating • Addressing Hot Spots in Reactor
	• Managing Heat Exchanger Fouling • Diagnosing Quench System Malfunctions
1230 - 1245	Break
	Feedstock & Product Quality Issues
1245 1220	Handling Variable Feedstock Compositions • Dealing with Impurities and
1245 – 1330	Contaminants • Managing Off-Specification Products • Realigning Operations to
	Meet Product Standards
	Mechanical & Equipment Troubleshooting
1330 - 1420	Reactor and Piping Integrity Issues • Compressors and Pumps: Common
1550 - 1420	Malfunctions • Separator and Stabilizer Inefficiencies • Leak Detection and
	Resolution Strategies
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

PE0192 - Page 6 of 8

Day 4

0730 - 0830	Improving Process Efficiency
	Energy Integration and Heat Recovery • Hydrogen Utilization and Recovery •
	Reactor Performance Optimization • Minimizing Operational Costs
	Maximizing Product Yields
0000	Adjusting Process Conditions for Better Yields • Advanced Modeling and
0830 – 0930	Simulation Techniques • Managing Recycle Streams and By-Products • Use of
	Additives and Modifiers for Performance Improvement
0930 - 0945	Break
	Data Analytics in Hydroisomerization
0045 1100	Role of Advanced Process Control (APC) • Using Data for Predictive Maintenance
0945 - 1100	• Monitoring System Health with Real-Time Analytics • Leveraging Historical
	Data for Optimization
	Feedstock & Catalyst Strategies
1100 - 1230	Selecting Optimal Feedstocks for Desired Outcomes • Tailoring Catalyst Use for
1100 - 1230	Specific Product Requirements • Strategies to Extend Catalyst Life • Balancing
	Feedstock Quality with Unit Efficiency
1230 - 1245	Break
	Environmental & Safety Considerations
1245 - 1330	Managing Emissions and Waste Stream • Hydrogen Safety: Risks and Mitigation •
1245 - 1550	Adherence to Environmental Regulations • Sustainable Operations and Carbon
	Footprint Reduction
	Case Studies & Lessons Learned
1330 - 1420	Examples of Successful Unit Optimizations • Common Failures and their
1550 - 1420	Resolutions • Benchmarking Against Industry Standards • Lessons from Field
	Applications
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Day 5

Day 5	
0730 - 0830	Interactive Troubleshooting Scenarios
	Simulating Real-Life Operational Issues • Collaborative Problem-Solving Exercises•
	Analyzing Root Causes of Process Deviations • Prioritizing Corrective Actions
	Hands-On Process Analysis
0020 0020	Interpreting Process Data and Trends • Using Diagnostic Tools for Issue
0830 - 0930	Identification • Simulating Control System Adjustments • Evaluating the Impact of
	Operational Changes
0930 - 0945	Break
0945 - 1100	Mock Emergency Response
	Simulating Emergency Shutdown Scenarios • Developing Quick Response Strategies
	• Ensuring Personnel Safety During Emergencies • Restarting Operations After
	Shutdown
1100 - 1230	Maintenance & Reliability
	Best Practices for Proactive Maintenance • Ensuring Equipment Reliability Under
	Varying Loads • Scheduling Catalyst Inspections and Replacements • Long-Term
	Reliability Planning
1230 - 1245	Break

PE0192 - Page 7 of 8

1245 - 1345	Process Audit & Review Conducting Unit Performance Audits • Identifying Gaps and Improvement Areas • Developing an Action Plan for Continuous Improvement • Sharing Audit Findings with Stakeholders
1345 - 1400	<i>Course Conclusion</i> Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0192 - Page 8 of 8

