

<u>COURSE OVERVIEW PE0201</u> Hot Oil System Startup, Shutdown, Normal Operations and <u>Troubleshooting</u>

Course Title

Hot Oil System Startup, Shutdown, Normal Operations and Troubleshooting

Course Date/Venue

Session 1: April 07-11, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Session 2: August 31-September 04, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Hot Oil System Startup. Shutdown, Normal Operations and Troubleshooting. It covers the importance of hot oil systems in petroleum operations; the applications in heating processes, reactors, and distillation units; the components of a hot oil system and heat transfer fluids (HTF) and their properties; the heat transfer mechanisms, efficiency considerations and safety considerations in hot oil systems; and the routine inspection and preventive maintenance as well as pre-startup inspection and system readiness checks.

Further, the course will also discuss the startup procedure for hot oil systems; the heat transfer fluid circulation and flow control; the normal operating conditions and performance monitoring; the energy efficiency and optimization in hot oil systems; the process control and automation, normal shutdown procedures, emergency shutdown procedures and safety response; troubleshooting hot oil pump failures and identifying fluid degradation and contamination issues: the heat exchanger fouling and performance issues; and identifying and addressing pipe and valve leaks.

PE0201 - Page 1 of 8

During this interactive course, participants will learn to diagnose overheating and hot spots in the system; address low heat transfer efficiency and identify and resolve pressurization problems; apply process optimization for improved reliability; interpret regulatory compliance and environmental considerations; troubleshoot common hot oil system issues; and apply maintenance planning and best practices.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on hot oil system startup, shutdown, normal operations and troubleshooting
- Discuss the importance of hot oil systems in petroleum operations and the applications in heating processes, reactors, and distillation units
- Identify the components of a hot oil system and heat transfer fluids (HTF) and their properties
- Explain heat transfer mechanisms, efficiency considerations and safety considerations in hot oil systems
- Carryout routine inspection and preventive maintenance as well as pre-startup inspection and system readiness checks
- Employ startup procedure for hot oil systems and illustrate heat transfer fluid circulation and flow control
- Apply normal operating conditions and performance monitoring including energy efficiency and optimization in hot oil systems
- Illustrate process control and automation, normal shutdown procedures, emergency shutdown procedures and safety response
- Troubleshoot hot oil pump failures and identify fluid degradation and contamination issues and heat exchanger fouling and performance issues
- Identify and address pipe and valve leaks and diagnose overheating and hot spots in the system
- Address low heat transfer efficiency and identify and resolve pressurization problems
- Apply process optimization for improved reliability and discuss regulatory compliance and environmental considerations
- Troubleshoot common hot oil system issues and apply maintenance planning and best practices

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of hot oil system startup, shutdown, normal operations and troubleshooting for, operators and technicians, maintenance personnel, engineers (process, mechanical, or electrical), safety officers or HSE (health, safety, and environment) personnel, supervisors and managers, quality assurance/control personnel, contractors or third-party service providers, training coordinators and other technical staff.

PE0201 - Page 2 of 8

PE0201-04-25|Rev.00|04 February 2025

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED PROVIDER (IAC

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE0201 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Kyle Bester is a Process Engineer and Senior HSE Consultant with extensive years of practical experience within the Oil & Gas, Power & Water Utilities and other Energy sectors. His expertise includes Troubleshooting Gas Processing, Ammonia Manufacturing & Process Troubleshooting, Ammonia Storage & Loading Systems, Ammonia Plant Operation, Troubleshooting & Optimization, Gas Removal, Amine Regeneration, Amine & Gas Dehydration, Molecular Sieves, NGL Recovery, LPG Distillation,

Gas Processing, Furnaces, Waste Heat Recovery, Process Troubleshooting, Gas Compression & Expansion, Process Liquid, Process Handling & Measuring Equipment, Gas Dehydration, Gas Separation, Distillation Processes, Safety in Industrial Plants, Rigging Safety Rules, Machinery & Hydraulic Lifting Equipment, Handling Hazardous Chemicals, Spill Containment, Fire Protection, Fire Precautions, Incidents & Accidents Reporting, HSEQ Audits & Inspection, HAZOP & HAZID, HAZMAT & HAZCOM Storage & Disposal, As Low as Reasonably Practicable (ALARP), Process Hazard Analysis (PHA), Process Safety Management (PSM), Hazardous Materials & Chemicals Handling, Pollution Control, Environment, Health & Safety Management, Process Risk Analysis, Effective Tool Box Talks, Construction Sites Safety, HSSE Management System, HSSE Audit & Inspection, HSEQ Procedures, Authorized Gas Testing, Confined Space Entry & Rescue, Risk Management, Quantitative & Qualitative Risk Assessment, Working at Height, Firefighting Techniques, Fire & Gas Detection System, Fire Fighter & Fire Rescue, Fire Risk Assessment, HSE Industrial Practices, Manual Handling, Rigging Safety Rules, Machinery & Hydraulic Lifting Equipment, Warehouse Incidents & Accidents Reporting, Incident & Accident Investigation, Emergency Planning, Emergency Response & Crisis Management Operations, Waste Management Monitoring, Root Cause Analysis, Hazard & Risk Assessment, Task Risk Assessment (TRA), Incident Command, Job Safety Analysis (JSA), Behavioral Based Safety (BBS), Fall Protection and Work Permit & First Aid. He is currently the Part Owner Manager of Extreme Water SA wherein he manages, re-designed and commissioned a water and wastewater treatment plants.

During his career life, Mr. Bester has gained his practical and field experience through his various significant positions and dedication as the Project Manager, Asset Manager, Manager, Water Engineer, HSE Advisor, Safety Engineer, Supervisor, Team Leader, Analyst, Process Technician, Landscape Designer and Senior Instructor/Trainer for various international companies, infrastructures, water and wastewater treatment plants from New Zealand, UK, Samoa, Zimbabwe and South Africa, just to name a few.

Mr. Bester holds a **Diploma** in **Wastewater Treatment** and a **National Certificate** in Wastewater & Water Treatment. Further, he is a Certified Instructor/Trainer, an Approved Chemical Handler and has delivered numerous courses, trainings, conferences, seminars and workshops internationally.

PE0201 - Page 4 of 8

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to Hot Oil Systems</i> Definition & Importance of Hot Oil Systems in Petroleum Operations • Applications in Heating Processes, Reactors, & Distillation Units • Comparison with other Heating Methods (Steam, Electrical, etc.) • Hot Oil System Applications
0930 - 0945	Break
0945 - 1030	Components of a Hot Oil System Hot Oil Heaters & Fired Heat Exchangers • Pumps & Circulation Systems • Expansion Tanks & Pressure Relief Systems • Control Valves & Instrumentation
1030 – 1130	<i>Heat Transfer Fluids (HTF) & Their Properties</i> <i>Types of Heat Transfer Fluids (Synthetic versus Mineral-Based) • Thermal</i> <i>Stability & Degradation Risks • Impact of Temperature & Pressure on Fluid</i> <i>Performance • Selection Criteria for Different Operating Conditions</i>
1130 – 1215	Design & Operating Principles of Hot Oil Systems Heat Transfer Mechanisms & Efficiency Considerations • Temperature & flow Control in Closed-Loop Systems • System Expansion & Pressure Compensation Principles • Insulation & Heat Retention Strategies
1215 – 1230	Break
1230 – 1330	Safety Considerations in Hot Oil SystemsFire Hazards & Prevention Measures • Pressure Relief & Over-TemperatureProtection • Personal Protective Equipment (PPE) & Handling Precautions •Safety Regulations & Industry Best Practices

PE0201 - Page 5 of 8

ilm

IACET

PE0201-04-25|Rev.00|04 February 2025

1330 - 1420	Routine Inspection & Preventive Maintenance Overview Importance of Preventive Maintenance • Daily, Weekly, & Monthly Inspection Schedules • Early Detection of Leaks & Thermal Degradation • Role of Condition Monitoring & Predictive Maintenance
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

	Pre-Startup Inspection & System Readiness Checks
0730 - 0830	Verifying Fluid Levels in Expansion Tanks • Checking Pump Operation &
	Pressure Settings • Inspecting Heat Exchangers & System Integrity •
	Ensuring Proper Valve Alignment & Instrument Calibration
	Startup Procedure for Hot Oil Systems
0020 0020	Step-by-Step Startup Sequence • Gradual Temperature Increase & Thermal
0850 - 0950	Expansion Management • Pump Priming & Flow Stabilization • System
	Pressure & Temperature Monitoring
0930 - 0945	Break
	Heat Transfer Fluid Circulation & Flow Control
0045 1100	Maintaining Proper Fluid Velocity & Heat Distribution • Preventing Stagnant
0945 - 1100	Zones & Thermal Degradation • Managing Differential Pressure in Heat
	Exchangers • Troubleshooting Flow Rate Imbalances
	Normal Operating Conditions & Performance Monitoring
1100 1015	Monitoring Temperature & Pressure Trends • Ensuring Consistent Heat
1100 - 1215	Transfer Efficiency • Identifying Early Signs of System Inefficiencies • Data
	Logging & Trend Analysis for Predictive Maintenance
1215 – 1230	Break
	Energy Efficiency & Optimization in Hot Oil Systems
1000 1000	Heat Recovery & System Insulation Strategies • Minimizing Heat Losses in
1230 - 1330	Pipelines & Storage Tanks • Process Control Adjustments for Energy Savings
	Case Studies on System Optimization in Operations
	Process Control & Automation in Hot Oil Systems
1220 1420	Use of Distributed Control Systems (DCS) for Monitoring $ullet$ Remote Control $\mathcal S$
1550 - 1420	Automated Safety Shutdowns • PID Controllers for Temperature & Flow
1420 – 1430	Regulation • Alarm Handling & Operator Response Procedures
	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 - 0830	Normal Shutdown Procedures for Hot Oil Systems
	Controlled Temperature Reduction Before Shutdown • Gradual Pressure
	Release & Pump Deceleration • Securing Expansion Tanks & Fluid
	Containment • Lockout/Tagout (LOTO) Procedures for Maintenance
0830 - 0930	Emergency Shutdown Procedures & Safety Response
	Identifying Emergency Shutdown Scenarios • Rapid Depressurization &
	Temperature Control Measures • Fire & Leak Response Procedures •
	Restarting Procedures After Emergency Shutdown

PE0201 - Page 6 of 8

UKAS

ilm 🚱

0930 - 0945	Break
0945 – 1100	Troubleshooting Hot Oil Pump Failures Identifying Symptoms of Pump Cavitation • Diagnosing Mechanical Seal Failures & Leaks • Addressing Flow Rate Inconsistencies & Blockages • Pump Maintenance & Repair Best Practices
1100 - 1215	Fluid Degradation & Contamination Issues Causes & Symptoms of Heat Transfer Fluid Breakdown • Detecting & Mitigating Sludge Formation • Filtration & Fluid Purification Techniques • Best Practices for Fluid Sampling & Analysis
1215 – 1230	Break
1230 - 1330	<i>Heat Exchanger Fouling & Performance Issues</i> <i>Causes of Fouling in Hot Oil Heat Exchangers</i> • <i>Identifying Loss of Heat</i> <i>Transfer Efficiency</i> • <i>Cleaning & Descaling Procedures</i> • <i>Preventive</i> <i>Maintenance Strategies for Heat Exchangers</i>
1330 - 1420	<i>Identifying & Addressing Pipe & Valve Leaks</i> Detecting leaks in High-Temperature Pipelines • Effects of Thermal Expansion on Pipeline Integrity • Repair Techniques for Minor & Major Leaks • Selecting Proper Gasket & Sealing Materials
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Dav A

Day 4	
0730 - 0830	Diagnosing Overheating & Hot Spots in the System Causes of Localized Overheating • Effects of Excessive Temperature on System Integrity • Correcting Flow Imbalances & Pressure Variations • Case Study on Resolving Overheating Issues
0830 - 0930	Addressing Low Heat Transfer EfficiencyIdentifying Underperforming Heat Exchangers • Adjusting Flow Rates &Temperature Setpoints • Using Additives & Chemical Treatments forEfficiency • Monitoring & Optimizing Heat Exchanger Effectiveness
0930 - 0945	Break
0945 - 1130	Pressure Control & Expansion Tank IssuesRole of Expansion Tanks in Pressure Stabilization • Identifying & ResolvingPressurization Problems • Effects of Thermal Expansion on SystemPerformance • Best Practices for Expansion Tank Maintenance
1130 – 1300	Process Optimization for Improved Reliability Reducing Fluid Degradation & Extending Fluid Life • Enhancing Safety through Improved Automation • Optimizing Circulation & Heat Exchanger Performance • Implementing Best Practices for Extended System Reliability
1300 - 1315	Break
1315 – 1420	Regulatory Compliance & Environmental Considerations Safety & Environmental Regulations • Managing Hot Oil Disposal & Replacement Strategies • Reducing Emissions & Waste Heat Generation • Case Studies on Sustainable Hot Oil System Operation
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

PE0201 - Page 7 of 8

AWS

Day 5	
	Case Studies on Advanced Troubleshooting
0730 - 0830	Real-World Examples of System Failures & Resolutions • Lessons Learned
0,000 0000	from Past Incidents • Best Practices for Improving system Uptime • Future
	Trends in Hot Oil System Technology
	Startup & Shutdown Procedures
0830 - 0930	Simulating Controlled Startup of a Hot Oil System •Identifying Operational
0000 0000	Issues During Startup • Step-by-Step Guided Shutdown Exercise • Operator
	Role in Emergency Shutdown Scenarios
0930 - 0945	Break
	Hot Oil System Monitoring & Control
0945 1100	<i>Using Real-Time monitoring tools</i> • <i>Adjusting Process Parameters for Optimal</i>
0545 - 1100	Performance • Detecting & Responding to Abnormal Conditions •
	Troubleshooting Pressure & Temperature Anomalies
	Troubleshooting Common Hot Oil System Issues
1100 1230	Diagnosing Leaks & Pressure Loss • Identifying & Fixing Pump Cavitation
1100 - 1250	Issues • Addressing Heat Exchanger Fouling in Real-Time Scenarios • Fluid
	Contamination Detection & Mitigation
1230 – 1245	Break
	Maintenance Planning & Best Practices
1245 – 1345	Creating a Preventive Maintenance Schedule • Conducting Fluid Analysis &
	System Inspections • Effective Record-Keeping & Maintenance Tracking
1345 – 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0201 - Page 8 of 8

PE0201-04-25|Rev.00|04 February 2025 📗

