

COURSE OVERVIEW DE0541 Production Chemistry

CEUS

30 PDHs)

AWAT

<u>Course Title</u> Production Chemistry

Course Date/Venue

- Session 1: May 18-22, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
- Session 2: September 29-October 03, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

DE0541

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Production Chemistry. It covers the role of production chemistry in oil and gas industry; the impact of chemical reactions on production efficiency; the composition and properties of produced fluids including the phase behavior and thermodynamics in production chemistry; the water chemistry in oil and gas production; the common chemical reactions in production systems; and the scale formation, deposition and corrosion and its impact on production assets.

Further, the course will also discuss the scale deposition and prevention techniques; the corrosion mechanisms in oilfield systems; the wax and asphaltene deposition in pipelines, hydrate formation and inhibition and emulsions in oil and gas production; the chemical injection strategies in production systems, gas treatment and processing chemistry; the crude oil dehydration and desalting; the enhanced oil recovery (EOR) chemistry; and the chemical compatibility testing and laboratory analysis.

DE0541- Page 1 of 8

During this interactive course, participants will learn the procurement and storage of production chemicals, transportation and handling of hazardous chemicals; the regulatory compliance in chemical management; the environmental impact of production chemicals, produced water treatment and reuse as well as green chemistry and sustainable production chemistry; the waste management, chemical disposal and commitment to net-zero and carbon reduction; the role of AI and machine learning in chemical management; and the smart sensors for real-time chemical monitoring.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain a good working knowledge on production chemistry
- Discuss the role of production chemistry in oil and gas industry and the impact of chemical reactions on production efficiency
- Identify the composition and properties of produced fluids including the phase behavior and thermodynamics in production chemistry
- Recognize water chemistry in oil and gas production as well as the common chemical reactions in production systems
- Interpret scale formation, deposition and corrosion and its impact on production assets
- Carryout scale deposition and prevention techniques and corrosion mechanisms in oilfield systems
- Determine wax and asphaltene deposition in pipelines, hydrate formation and inhibition and emulsions in oil and gas production
- Apply chemical injection strategies in production systems and gas treatment and processing chemistry
- Illustrate crude oil dehydration and desalting and discuss enhanced oil recovery (EOR) chemistry
- Employ chemical compatibility testing and laboratory analysis
- Carryout procurement and storage of production chemicals, transportation and handling of hazardous chemicals and regulatory compliance in chemical management
- Discuss environmental impact of production chemicals, produced water treatment and reuse as well as green chemistry and sustainable production chemistry
- Apply waste management, chemical disposal and commitment to net-zero and carbon reduction
- Define the role of AI and machine learning in chemical management as well as apply smart sensors for real-time chemical monitoring

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

DE0541- Page 2 of 8

Who Should Attend

This course provides an overview of all significant aspects and considerations of production chemistry for production technicians, process operators, researchers in chemical or process engineering, maintenance personnel in chemical plants, quality control and assurance professionals.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

DE0541- Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Shehab Al-Hamoud, MSc, BSc, is a Senior Petroleum Engineer with over 25 years of offshore and onshore experience in the Oil & Gas, Refinery & Petrochemical industries. His wide expertise includes Advanced Production Logging, Well Testing & Software Application, Wellhead & X-mass Tree, Completion Design, Well Integrity, Drilling & Workover Operations, Completion Design & Fishing, Well Control, Stuck Pipe Principle

& Practical, Advanced Coiled Tubing Operations & Fishing, Rigless Solutions, Advanced Wire Line & Fishing, Well Completion Design & Performance for Production Engineering, SCSSV Problems, Well Testing Operations, Well Intervention (IWCFR), Workovers & Completions, Petroleum Risk & Decision Analysis, Well Testing Analysis, Engineering & Simulation, Reservoir Monitoring, Artificial Lift Design, Gas Operations, Oil & Gas Production, Well Cementing, Production Optimization, Production Logging and Project Evaluation & Economic Analysis. He is currently the Well Service & Field Operations Engineer/Supervisor wherein he is in-charge of rigless package operations, kill well, coiled tubing operations, acidizing and fracturing, slick line operations, well completion and exploratory well testing operations, safety and emergency exercises on site.

During his career life, Mr. Shehab has gained his practical and field experience through his various significant positions and dedication as the **Field Operations Engineer**, **Well Services Engineer**, **Completion & Well Service Supervisor**, **Rigless Package Supervisor**, **Completion & Workover Supervisor**, **Completion & Workover Supervisor**, **Well Site Supervisor** and **Senior Technical Train/Lecturer** from various international companies such as the AFPC, ADCO and SPC just to name a few.

Mr. Shehab has a **Bachelor's** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** a **Certified Petroleum Engineer**, held certificates on **IADC/ IWCF Well Control** and **H2S Training** and has delivered numerous trainings, courses, seminars, workshops and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

DE0541- Page 4 of 8

Course Fee

US\$ 8,000 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

<u>Day 1</u>	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	<i>Introduction to Production Chemistry</i> <i>Role of Production Chemistry in Oil and Gas Industry</i> • <i>Impact of Chemical</i>
	Reactions on Production Efficiency • Approach to Production Chemistry • Case Studies on Production Chemistry Challenges
	Composition & Properties of Produced Fluids
0000 0020	Crude Oil Composition and Classification • Natural Gas Components and
0900 - 0950	Properties • Water Chemistry in Production Systems • Formation and Handling
	of Emulsions
0930 - 0945	Break
	Phase Behavior & Thermodynamics in Production Chemistry
0945 1130	Understanding Phase Diagrams and PVT Analysis • Gas-Liquid Equilibrium and
0545 - 1150	Its Impact on Production • Wax and Asphaltene Precipitation in Hydrocarbons
	• Impact of Temperature and Pressure on Fluid Behavior
	Water Chemistry in Oil & Gas Production
1130 - 1230	Composition of Formation and Produced Water • Water pH, Scaling, and
1100 1200	Corrosion Issues • Water Treatment Techniques in Oil and Gas Production •
	Produced Water Management Strategies
1230 – 1245	Break
	Common Chemical Reactions in Production Systems
1245 1220	Hydrocarbon Oxidation and Degradation • Sulfide and Carbonate Reactions in
1245 - 1550	Reservoirs • Acid-Base Interactions in Oilfield Fluids • Monitoring and Control
	of Chemical Reactions
	Production Chemistry Challenges & Solutions
1330 - 1420	Scale Formation and Deposition • Corrosion and Its Impact on Production Assets
1550 - 1420	• Wax and Asphaltene Problems in Pipelines • Strategies for Production
	Chemistry Optimization
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today and Advise Them of the Topics to be Discussed</i>
	Tomorrow
1430	Lunch & End of Day One

DE0541- Page 5 of 8

Day 2	
0730 - 0800	Scale Deposition & Prevention Techniques
	<i>Causes of Scale Deposition in Oil Wells and Pipelines</i> • <i>Common Types of Scales</i>
	(Calcium Carbonate, Barium Sulfate, Iron Sulfide) • Chemical Scale Inhibitors
	and Their Mechanisms • Scale Management and Prevention Strategies
	Corrosion Mechanisms in Oilfield Systems
0800 0030	Types of Corrosion (CO_2 Corrosion, H_2S Corrosion, Microbial Corrosion) •
0000 - 0950	Electrochemical Reactions in Corrosion Processes • Corrosion Inhibitors and
	Coatings • Corrosion Prevention and Monitoring Programs
0930 - 0945	Break
	Wax & Asphaltene Deposition in Pipelines
0045 1100	Chemical Composition and Formation Mechanisms • Impact on Flow Assurance
0343 - 1100	and Pipeline Integrity • Wax Dispersants and Asphaltene Inhibitors • Pipeline
	Wax and Asphaltene Management Techniques
	Hydrate Formation & Inhibition
1100 1230	Mechanisms of Gas Hydrate Formation in Pipelines • Hydrate Inhibitors
1100 - 1250	(Thermodynamic and Kinetic Inhibitors) • Role of Dehydration in Hydrate
	Prevention • Strategies for Hydrate Risk Mitigation
1230 - 1245	Break
	Emulsions in Oil & Gas Production
1230 - 1330	Formation of Water-in-Oil and Oil-in-Water Emulsions • Stability and
1200 - 1000	Breakdown Mechanisms of Emulsions • Demulsification Techniques and Chemical
	Additives • Emulsion Treatment and Separation Technologies
	Case Study: Flow Assurance & Chemical Management
1330 - 1420	Overview of Flow Assurance • Chemical Injection and Monitoring Programs •
1000 1120	Success Stories in Scale, Corrosion, and Wax Management • Future Challenges
	and Mitigation Strategies
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 - 0800	Chemical Injection Strategies in Production Systems
	Types of Production Chemicals and Their Functions • Chemical Injection Points
	and Monitoring Methods • Compatibility of Production Chemicals with Reservoir
	Fluids • Best Practices in Chemical Injection
0800 - 0930	Gas Treatment & Processing Chemistry
	Removal of H_2S and CO_2 From Natural Gas • Use of Amines and Absorption
	Processes • Impact of Gas Processing Chemistry on LNG Production
	Gas Sweetening and Treatment Technologies
0930 - 0945	Break
0945 - 1100	Crude Oil Dehydration & Desalting
	Need for Water and Salt Removal from Crude Oil • Electrostatic Desalters and
	Chemical Demulsifiers • Impact of Salt Content on Refining Processes • Approach
	to Crude Oil Quality Improvement
1100 - 1230	Enhanced Oil Recovery (EOR) Chemistry
	Polymer Flooding and Surfactant-Polymer Flooding • Alkaline Flooding and Its
	Role in Oil Mobilization • CO_2 Injection and Miscible Gas Flooding • EOR
	Initiatives and Chemical Innovations

DE0541- Page 6 of 8

1230 - 1245	Break
1230 - 1420	<i>Chemical Compatibility Testing & Laboratory Analysis</i> <i>Importance of Chemical Compatibility Studies</i> • <i>Standard Laboratory Tests for</i> <i>Chemical Screening</i> • <i>Laboratory Capabilities in Production Chemistry</i> • <i>Data</i> <i>Interpretation and Decision-Making in Chemical Selection</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 - 0930	Chemical Supply Chain and Logistics
	Procurement and Storage of Production Chemicals • Transportation and
	Handling of Hazardous Chemicals • Regulatory Compliance in Chemical
	Management • Chemical Inventory Optimization Strategies
0930 - 0945	Break
0045 1100	Environmental Impact of Production Chemicals
	Effects of Production Chemicals on Marine and Soil Ecosystems • Regulations on
0040 - 1100	Chemical Discharge and Disposal • Environmental Protection Initiatives • Case
	Study: Sustainable Chemical Management
	Produced Water Treatment & Reuse
1100 - 1230	<i>Chemical and Physical Properties of Produced Water</i> • <i>Technologies for Removing</i>
1100 - 1250	<i>Oil, Solids, and Salts</i> • <i>Chemical Treatment versus Membrane Filtration Methods</i>
	Water Recycling and Disposal Strategies
1230 - 1245	Break
	Green Chemistry & Sustainable Production Chemistry
1230 - 1330	Principles of Green Chemistry in Oilfield Operations • Development of Eco-
1250 - 1550	Friendly Production Chemicals • Reducing Chemical Consumption Through
	Process Optimization • Sustainability Roadmap in Chemical Applications
	Waste Management & Chemical Disposal
1330 - 1420	Handling of Chemical Waste in Oil and Gas Operations • Compliance with
1000 1120	Environmental Laws • Recycling and Reuse of Production Chemicals • Case
	Study: Best Practices in Chemical Waste Management
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Dav 5

0730 – 0830	<i>Commitment to Net-Zero & Carbon Reduction</i> <i>Role of Production Chemistry in Emission Reduction</i> • <i>Carbon Capture and</i> <i>Storage (CCS) Technologies</i> • <i>Chemical Innovations for Energy Efficiency</i> • <i>Decarbonization Strategy</i>
0830 - 0930	Workshop: Sustainable Chemical SolutionsIdentifying Key Sustainability Challenges • Group Discussion on GreenChemistry Innovations • Developing a Chemical Optimization Plan •Presentation of Findings and Recommendations
0930 - 0945	Break

DE0541- Page 7 of 8

0945 - 1230	Case Study: Production Chemistry Challenges & Solutions
	Overview of Production Challenges • Strategies for Optimization and Chemical
	Application • Lessons Learned and Future Improvements • Interactive Discussion
	and Knowledge Sharing
1230 - 1245	Break
1245 - 1345	Advanced Technologies in Production Chemistry
	Role of AI and Machine Learning in Chemical Management • Smart Sensors for
	Real-Time Chemical Monitoring • Investment in Digital Oilfield Technologies •
	Future Trends in Chemical Process Automation
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE0541- Page 8 of 8

