

COURSE OVERVIEW DE0544 Oilfield Scaling Analysis

<u>Course Title</u> Oilfield Scaling Analysis

Course Date/Venue

Session 1: May 26-30, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE Session 2: September 21-25, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

CEUS

(30 PDHs)

AWAT

Course Reference

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Oilfield Scaling Analysis. It covers the common types of scales in petroleum production and the impact of scale deposition on production efficiency; the various types of oilfield scales, mechanisms of scale formation and the factors influencing scale deposition; the impact of scale on oilfield operations including laboratory and field detection of scales; the real-time scale monitoring techniques, water chemistry and scale formation potential; the role of production chemistry in scale deposition; and the risk assessment and mitigation planning.

During this interactive course, participants will learn the scale prevention through water chemistry control; the proper selection and application of chemical scale inhibitors; the deployment strategies for scale inhibitors, alternative scale prevention methods and scale prevention in water injection systems; the mechanical scale removal techniques, chemical scale dissolution methods and hydrothermal and electrochemical scale removal; the downhole and surface facility scale removal and safety and environmental considerations in scale treatment; the AI and machine learning in scale prediction and control; and the scale management in enhanced oil recovery (EOR),

DE0544 - Page 1 of 8

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on oilfield scaling analysis
- Discuss the common types of scales in petroleum production and the impact of scale deposition on production efficiency
- Identify the various types of oilfield scales, mechanisms of scale formation and the factors influencing scale deposition
- Explain the impact of scale on oilfield operations including laboratory and field detection of scales
- Carryout real-time scale monitoring techniques and identify water chemistry and scale formation potential
- Define the role of production chemistry in scale deposition and apply risk assessment and mitigation planning
- Employ scale prevention through water chemistry control as well as the proper selection and application of chemical scale inhibitors
- Apply deployment strategies for scale inhibitors, alternative scale prevention methods and scale prevention in water injection systems
- Carryout mechanical scale removal techniques, chemical scale dissolution methods and hydrothermal and electrochemical scale removal
- Implement downhole and surface facility scale removal and safety and environmental considerations in scale treatment
- Apply AI and machine learning in scale prediction and control including scale management in enhanced oil recovery (EOR)

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of oilfield scaling analysis for production engineers, reservoir engineers, well engineers, chemical engineers, corrosion engineers, operations personnel, maintenance teams, service company representatives and field technicians.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

DE0544 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accredited The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

DE0544 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. David Berryman is a Senior Drilling Operations Engineer with over 40 years of Offshore & Onshore experience within the Oil & Gas industries. He is an international expert in Drill String Intensity & Design, Drill String Optimization, Stuck Pipe Prevention, Wireline Operations & Techniques, Fishing Operations, Drilling & Petroleum Engineering, ERD Drilling, Well Service Operations, Well Test Design & Analysis, Well Composite, Construction

Integrity, Completion & Production Optimization, Well Completion, Well Integrity Management, Well Bore Analysis, Well Control & Blowout Prevention, Well Bore Integrity, High Pressure High Temperature (HPHT), Pulling Out of Hole (POOH), PWD Interpretation, Surface Logging, Drilling Optimization, Well Planning, Horizontal & Directional Drilling, Well Hole Cleaning, Mud-Logging, Downhole Vibration, Extended Reach Drilling, Torque & Drag Modelling, Pore Pressure Evaluation, Pressure Transient Testing & Reservoir Performance Evaluation, Review Process Data & Fluid Properties, Conductor Line Pressure Surveys and Chemical Tubing Cutting. He is also well-versed in Bow-Tie HSE Risk Management Svstem. Hvdraulics Management, Data Interpretation. Petroleum Data Management, Hydraulic Calculations, Safety Management System, Rig Operations and various drilling softwares including Well Plan and Compass (Landmark); DFG, Planit, Insite Anywhere (Halliburton); Discovery Well, Discovery Web (Kongsberg); Digital Well File (Petrolink) and Well View (Peloton).

Throughout his long career life, Mr. Berryman has worked for many international companies in the **Gulf of Mexico**, **Europe**, **Africa**, **Central Asia** (Kazakhstan) the **Middle East**, **Far East** and the **North Sea** such as Marathon Oil UK, Talisman-Sinopec, BG Group, Sperry Drilling, Stavanger, BP, Hycalog, Camtest/Camco and Gearheart. He had occupied various key positions as the **Drilling Manager**, **Drilling Engineer Supervisor**, **Drilling Supervisor**, **Drilling Operations Engineer**, **Applied Drilling Technology Engineer**, **Data Engineer**, **Mud Logger**, **Sales & Service Engineer** and **Downhole Gauge Engineer** and **Senior Instructor/Trainer**. During this period, he has led the development of a **software solution** for real-time monitoring of drag whilst tripping in extended reach wells.

Mr. Berryman has a **Bachelor's** degree in **Mining** from the **University of Leeds**, **UK**. Further, he has acquired **certifications** from the **IWCF** for **Combined Surface** and **Subsea Blow-Out Preventer Stack**, the **BOSIET**, the **UKCS** for Offshore Working and the **Prince2 Foundation** for **Project Management**. Further, he is a **Certified Instructor/Trainer**, a **Drill String Design Proctor** by **Fearnley**, a **Certified Trainer/Assessor/Internal Verifier** by the **Institute of Leadership & Management** (**ILM**) and has delivered and presented innumerable training courses and workshops worldwide.

Course Fee

US\$ 8,000 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

DE0544 - Page 4 of 8

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to Oilfield Scaling</i> Definition and Significance of Scaling in Oilfield Operations • Common Types of Scales in Petroleum Production • Impact of Scale Deposition on Production Efficiency • Approach to Managing Oilfield Scaling
0930 - 0945	Break
0945 - 1045	Types of Oilfield Scales Carbonate Scales (Calcium Carbonate, Iron Carbonate) • Sulfate Scales (Barium Sulfate, Strontium Sulfate, Calcium Sulfate) • Silicate and Silica- Based Scales • Mixed and Organic Scales (Asphaltene and Wax Interactions)
1045 - 1130	<i>Mechanisms of Scale Formation</i> <i>Thermodynamic and Kinetic Aspects of Scale Deposition</i> • <i>Role of</i> <i>Temperature, Pressure, and Salinity in Scaling</i> • <i>Mixing of Incompatible</i> <i>Waters (Formation Water vs. Injection Water)</i> • <i>Scale Formation in Different</i> <i>Production Environments</i>
1130 - 1230	<i>Factors Influencing Scale Deposition</i> <i>Reservoir Mineralogy and Fluid Composition</i> • <i>Well Operations and Flow Rate</i> <i>Variations</i> • <i>Effects of Enhanced Oil Recovery (EOR) Methods</i> • <i>Pipeline and</i> <i>Facility Conditions Affecting Scale Formation</i>
1230 - 1245	Break
1245 - 1330	<i>Impact of Scale on Oilfield Operations</i> <i>Flow Restriction and Tubing Blockage</i> • <i>Reduced Production Efficiency and</i> <i>Equipment Failure</i> • <i>Corrosion Acceleration Due to Scale Formation</i> • <i>Cost</i> <i>Implications of Untreated Scaling Problems</i>
1330 - 1420	<i>Laboratory & Field Detection of Scales</i> <i>Sampling Techniques for Scale Identification</i> • <i>Chemical and X-Ray Diffraction</i> <i>(XRD) Analysis of Scale Deposits</i> • <i>Scanning Electron Microscopy (SEM) for</i> <i>Scale Morphology</i> • <i>Laboratory Analysis Procedures for Scale Assessment</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830	Scale Prediction Models & Thermodynamic Software
	Importance of Predictive Modeling in Scale Control • ScaleChem, OLI
	ScaleSoft, and MultiScale Software Overview • Inermouynamic vs. Kinetic Modeling Amroaches • Case Studies on Predictive Modeling in Fields
	D 1 1: C 1 M : C T 1 :
0830 – 0930	Keal-time Scale Monitoring Techniques
	Online and Offline Scale Detection Methods • Use of Ultrasonic and Acoustic
	Sensors for Scale Monitoring • Chemical Analysis of Produced Water for
	Scaling Tendencies • Role of Fiber Optic Technology in Remote Scale
	Monitoring

DE0544 - Page 5 of 8

0930 - 0945	Break
0945 - 1100	Water Chemistry & Scale Formation Potential
	Key Parameters Influencing Scale Formation (pH, Temperature, Pressure) •
	Sulfate and Carbonate Ion Concentration Analysis • Water Compatibility
	Assessment Before Injection • Best Practices for VVater Treatment in Scale
	Prevention
	Role of Production Chemistry in Scale Deposition
1100 - 1230	Effect of Scaling Ions on Well Integrity • Gas, Oil, and Water Interactions
	<i>Leading to Scale Formation</i> • <i>Chemical Precipitation and Solubility Dynamics</i>
	• Chemical Inhibitors and their Role in Scale Management
1230 – 1245	Break
	Case Studies on Scale Prediction & Monitoring
1245 - 1330	<i>Field-Scale Validation of Prediction Models</i> • <i>Early Detection and Intervention</i>
1245 - 1550	Strategies • Case Studies on Real-Time Scale Monitoring • Future
	Improvements in Scale Prediction Techniques
	Risk Assessment & Mitigation Planning
1330 1420	<i>Identifying High-Risk Wells and Facilities</i> • Cost-Benefit Analysis of Proactive
1550 - 1420	vs. Reactive Scale Management • Scale Prevention vs. Remediation Decision-
	Making • Risk Assessment Approach for Scaling Issues
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 - 0830	Scale Prevention Through Water Chemistry Control
	Controlling Bicarbonate and Sulfate Levels in Injection Water • Adjusting pH
	to Reduce Scaling Risks • Role of Temperature and Pressure Management •
	Field Applications of Water Treatment in Fields
	Chemical Scale Inhibitors: Selection & Application
	<i>Types of Scale Inhibitors (Phosphonates, Polymers, Carboxylates)</i> •
0830 - 0930	Mechanisms of Action in Preventing Scale Formation • Scale Inhibitor
	Selection Criteria for Different Oilfield Conditions • Chemical Treatment
	Programs for Scale Prevention
0930 - 0945	Break
	Deployment Strategies for Scale Inhibitors
0045 1100	Continuous vs. Batch Scale Inhibitor Injection • Scale Squeeze Treatment for
0945 - 1100	Downhole Prevention • Compatibility of Inhibitors with other Production
	Chemicals • Smart Inhibitor Release Technologies for Long-Term Protection
	Alternative Scale Prevention Methods
1100 1220	Nano-Scale Inhibitors and Advanced Chemical Formulations • Electromagnetic
1100 - 1230	Scale Control Techniques • Use of Biodegradable Inhibitors for Environmental
	Compliance • Innovations in Sustainable Scale Prevention
1230 - 1245	Break
	Scale Prevention in Water Injection Systems
	Water Pre-Treatment Methods (Softening, Desalination, Filtration) • Scaling
1245 - 1330	Risks in Polymer and CO ₂ Injection • Managing Scale Formation in Produced
	Water Reinjection • Best Practices for Scale Control in Water Handling
	Systems

DE0544 - Page 6 of 8

1330 - 1420	<i>Case Studies on Effective Scale Prevention</i> <i>Success Stories and International Fields</i> • <i>Challenges in Implementing Scale</i> <i>Inhibitor Programs</i> • <i>Lessons Learned from Past Failures and Improvements</i> • <i>Future Trends in Chemical Scale Prevention Technologies</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Dav 4

Duy 4	
0730 - 0830	Mechanical Scale Removal Techniques
	Coiled Tubing and Jetting Methods for Scale Removal • Milling and Drilling
	Technologies for Hard Scale Deposits • Mechanical Pigging for Pipeline Descaling
	 Limitations and Risks of Mechanical Removal Methods
	Chemical Scale Dissolution Methods
0830 - 0930	Acid-Based Dissolution (HCl, Organic Acids, Blended Acids) • Chelating Agents
0000 - 0000	for Sulfate Scale Removal • Customized Solvent Blends for Complex Scale
	Dissolution • Protocols for Chemical Scale Remediation
0930 - 0945	Break
	Hydrothermal & Electrochemical Scale Removal
0045 1100	High-Temperature Water and Steam Cleaning for Scale Removal • Electrochemical
0943 - 1100	Methods for Breaking Down Scale Deposits • Field Applications of Hydrothermal
	Descaling • Case Studies on Alternative Scale Removal Techniques
	Downhole & Surface Facility Scale Removal
1100 1230	Treatment Options for Downhole Scale Remediation • Managing Scale Deposition
1100 - 1250	in Separators and Pipelines • Integration of Mechanical and Chemical Methods for
	Optimal Results • Scale Removal Planning and Operational Best Practices
1230 – 1245	Break
	Safety & Environmental Considerations in Scale Treatment
1245 1420	Handling of Acidizing Chemicals and Safety Protocols • Waste Disposal and
1243 - 1420	Environmental Impact of Chemical Treatments • Risk Assessment and Mitigation
	Strategies • Compliance with Environmental Regulations in Scale Management
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Dav 5

0730 - 0930	Case Studies on Scale Removal in Oilfield Operations Challenges in Hard-to-Remove Scales • Field Experience with Scale Remediation • Lessons Learned and Best Practices • Future Improvements in Scale Removal Technologies
0930 - 0945	Break
0945 - 1100	<i>AI & Machine Learning in Scale Prediction & Control</i> <i>AI-Driven Scale Prediction Models</i> • <i>Real-Time Scale Inhibitor Dosage</i> <i>Optimization Using Big Data</i> • <i>Case Studies on AI Applications in Oilfield Scale</i> <i>Management</i> • <i>Future of Predictive Analytics in Scale Management</i>
1100 - 1230	Scale Management in Enhanced Oil Recovery (EOR) Scaling Risks in Thermal EOR (Steam Flooding) • Managing Scale Deposition in Polymer and Surfactant Flooding • CO ₂ EOR and Associated Scale Challenges • Best Practices for Scale Control in EOR Projects

DE0544 - Page 7 of 8

IACET

ilm

A B

1230 - 1245	Break
1245 - 1345	<i>Scale Analysis & Testing</i> <i>Laboratory Testing of Scale Composition and Solubility</i> • <i>Scale Inhibitor Selection</i>
	and Performance Testing • Practical Exercises in Chemical Scale Dissolution
	Methods • Data Interpretation and Scale Monitoring Analysis
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE0544 - Page 8 of 8

