

COURSE OVERVIEW ME0271 Cooling & Water Systems Management

<u>Course Title</u> Cooling & Water Systems Management

Course Date/ Venue

- Session 1: April 14-18, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
- Seesion 2: October 05-09, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

ME0271

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed comprehensive and overview of cooling water, fire water systems and waste water treatment units. It covers the heat transfer, conduction, convection and radiation; the factors of heat transfer and the basic types of heat exchangers; the shell and tube heat exchangers, air fin or fin fan cooler and the main components of cooling water system; the P&ID and device summary as well as the proper start-up, shutdown and troubleshooting of cooling water supply and active & passive systems; and the flow diagram, fire water supply, equipment and components.

During this interactive course, participants will learn the advantages and application of carbon dioxide systems; the types and application of deluge systems; the characteristics and components of wastewater; the principles of the processes used in primary and secondary treatment of wastewater; the tertiary treatment options; controlling and optimizing the treatment process; the calculations for process optimisation; the new wastewater treatment technologies; the sludge treatment and disposal; and the responsibilities for health and safety and risk assessments.

ME271 - Page 1 of 7

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on cooling water, fire water systems and waste water treatment units
- Discuss heat transfer, conduction, convection and radiation
- Identify the factors of heat transfer and the basic types of heat exchangers
- Recognize shell and tube heat exchangers, air fin or fin fan cooler and the main components of cooling water system
- Illustrate P&ID and device summary as well as start-up, shutdown and troubleshooting of cooling water system
- Recognize industrial fire fighting systems, fire water supply and active and passive systems
- Illustrate flow diagram and determine fire water supply, equipment and components
- Identify foam types, concentrations, properties and comparison as well as wet and dry pipe sprinkler systems
- Explain the advantages and application of carbon dioxide systems
- Recognize the types and application of deluge systems including wastewater characteristics and components
- Enumerate BOD, COD, the other measures of wastewater strength and effluent discharge consent
- Explain the principles of the processes used in primary and secondary treatment of wastewater
- Discuss tertiary treatment options as well as control and optimize treatment process
- Calculate process optimisation and apply the new wastewater treatment technologies
- Carryout sludge treatment and disposal, identify the responsibilities for health and safety and carryout risk assessments

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of cooling water & fire water systems, waste water treatment units for power plant operators.

ME271 - Page 2 of 7

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

BAC British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED

<u>The International Accreditors for Continuing Education and Training</u> (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

<u>Course Fee</u>

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

ME271 - Page 3 of 7

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mustafa Fadel is a Senior Mechanical Engineer with over 25 years of industrial experience within the Power & Water Utilities and other Energy Sectors. His specialization widely covers District Cooling: Plant: Design, Operation & Maintenance HVAC System, HVAC Equipment Terminology, HVAC System Block Load Calculation, HVAC System Development of Drawings, Air Distribution System, Basic Chiller Water System Design &

Selection, Pump Design & Selection, Rotating & Static Equipment, Cooling Tower Design, Boiler Design & Selection, Energy Management & Value Engineering for Mechanical Ventilation, Smoke Ventilation, Mechanical System, Staircase Pressurization, System Design & Development of Drawings, Data Center Design, Precision AC Equipment Selection, Refrigeration Systems, Air Cooler Design, Chillers, Mass & Heat Transfer, Electromechanical, Rotating & Static Equipment including Heat Exchangers, Piping & Pipeline, Pressure Vessels, Valves, Tanks Turbines, Compressors, Motors, Pumps, Evaporators, Condensers, Blowers and Fans, Maintenance Planning & Scheduling, Root Cause Failure Analysis, Performance Calculations, Reliability Maintenance and Corrective & Preventive Maintenance. Further, he is also well-versed in HSE Management, KPI's, CMMS and AutoCAD as well as in various international standards such as the ASHRAE, API, ASTM, ASME, AMCA, NFPA and SMACNA. Currently, he is the HVAC&R Specialist in SEGAS LNG Plant wherein he is responsible for the implementation, construction and maintenance strategy for industrial HVAC&R equipment.

During his career life, Mr. Fadel has gained his practical and field experience through his various significant positions and dedication as the **Section Head**, **Project Manager**, **HVAC System Consultant Engineer**, **Mechanical Engineer**, **HVAC&R Instructor** and **Senior Technical Consultant** for international companies and universities like the **Foster Wheeler**, **Technip**-Italy, Borner Company, Union FENOSA Gas, Asphalt Bitumen, King Khalid University, Alexandria Petroleum Company, FAWAZ Company, Marium Corporation and many more.

Mr. Fadel has a **Bachelor's** degree in **Power Mechanical Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)** and an active member of the American Society of Heating Refrigetaring and Air Conditioning Engineers (**ASHRAE**), **USA**. He has further delivered and participated numerous engineering and inspection projects, trainings, courses, seminars and conferences globally.

ME271 - Page 4 of 7

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0915	Introduction to Heat Transfer
0915 - 0930	Conduction, Convection & Radiation
0930 - 0945	Break
0945 – 1115	Heat Transfer Factors
1115 - 1215	Basic Types of Heat Exchangers
1215 – 1230	Break
1230 - 1330	Shell & Tube Heat Exchanger
1330 – 1420	Air Fin (or Fin Fan) Cooler
1420 – 1430	Recap
1430	Lunch & End of Day One

Dav 2

Day Z	
0730 – 0900	Main Components of Cooling Water System
0900 - 0930	P&ID
0930 - 0945	Break
0945 – 1100	Device Summary
1100 – 1215	Start-up & Shutdown of Cooling Water System
1215 – 1230	Break
1230 – 1330	Troubleshooting of Cooling Water System
1330 – 1420	Industrial Fire Fighting Systems
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

Duyo	
0730 – 0830	Fire Water Supply
0830 - 09830	Active & Passive Systems
0930 - 0945	Break

ME271 - Page 5 of 7

0945 – 1100	Flow Diagram
1100 – 1215	Fire Water Supply, Equipment & Components
1215 – 1230	Break
1230 - 1330	Foam Types, Concentrations, Properties & Comparison
1330 – 1420	Wet & Dry Pipe Sprinkler Systems
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

0730 – 0830	Advantages & Application of Carbon Dioxide Systems
0830 - 0930	Types & Applications of Deluge Systems
0930 - 0945	Break
0945 – 1100	Wastewater Characteristics & the Components of Wastewater
1100 – 1215	BOD, COD and the other Measures of Wastewater Strength
1215 – 1230	Break
1230 - 1330	Effluent Discharge Consents
1330 - 1420	The Principles of the Processes Used in Primary & Secondary Treatment
	of Wastewater
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 – 0830	Tertiary Treatment Options
0830 - 0930	Controlling & Optimizing the Treatment Process
0930 - 0945	Break
0945 – 1130	Calculations for Process Optimisation
1130 – 1215	New Wastewater Treatment Technologies
1215 – 1230	Break
1230 – 1130	Sludge Treatment & Disposal
1230 – 1345	Responsibilities for Health & Safety, and Carrying out Risk Assessments
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

ME271 - Page 6 of 7

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

<u>Course Coordinator</u> Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

