

<u>COURSE OVERVIEW DE0546</u> <u>Seismic Petrophysics and Geomechanics of</u> <u>Unconventional Shales</u>

CEUS

(30 PDHs)

AWAR

Course Title

Seismic Petrophysics and Geomechanics of Unconventional Shales

Course Date/Venue

- Session 1: July 14-18, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
- Session 2: December 21-25, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

DE0546

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a up-to-date overview of detailed and Seismic Petrophysics and Geomechanics of Unconventional Shales. It covers the unconventional shale reservoirs, rock properties in shale reservoirs and seismic wave propagation in shales: the basics of seismic petrophysics, data acquisition in unconventional shales and petrophysical characterization of shales; the advanced logging tools for shales, elastic properties of shales and seismic inversion for shale properties; and the role of anisotropy in shale reservoirs.

During this interactive course, participants will learn the seismic attributes for shale reservoirs and petrophysical modeling in shales; the geomechanics in shales, stress regimes in shale reservoirs and mechanical properties of shales; the fracture mechanics in shales, pore pressure and stress coupling; the hydraulic fracturing basics and fracture characterization in shales; the microseismic monitoring, seismic monitoring of reservoir changes, wellbore stability analysis integration and of geomechanics with petrophysics; the integrated workflows for shale reservoirs and uncertainty analysis in shale development; and the emerging technologies in shale development.

DE0546- Page 1 of 9

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an in-depth knowledge on seismic petrophysics and geomechanics of unconventional shales
- Discuss unconventional shale reservoirs, rock properties in shale reservoirs and seismic wave propagation in shales
- Explain the basics of seismic petrophysics, data acquisition in unconventional shales and petrophysical characterization of shales
- Identify advanced logging tools for shales, elastic properties of shales and seismic inversion for shale properties
- Define the role of anisotropy in shale reservoirs and discuss seismic attributes for shale reservoirs and petrophysical modeling in shales
- Determine geomechanics in shales, stress regimes in shale reservoirs and mechanical properties of shales
- Recognize fracture mechanics in shales, pore pressure and stress coupling
- Interpret hydraulic fracturing basics and fracture characterization in shales
- Carryout microseismic monitoring, seismic monitoring of reservoir changes, wellbore stability analysis and integration of geomechanics with petrophysics
- Discuss the integrated workflows for shale reservoirs, uncertainty analysis in shale development and emerging technologies in shale development

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of seismic petrophysics and geomechanics of unconventional shales for geophysicists and geologists, petroleum engineers, reservoir engineers, geomechanics engineers, data scientists and analysts, academics and researchers, energy industry consultants and other technical staff.

DE0546- Page 2 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

DE0546- Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Stan Constantino, MSc, BSc, is a Senior Petroleum & Reservoir Engineer with over 30 years of Offshore & Onshore extensive experience within the Oil, Gas & Petroleum industries. His area of expertise include Reserves & Resources, Reserves Estimation & Uncertainty, Reservoir Characterization, Unconventional Resource & Reserves Evaluation, Oil & Gas Reserves Estimation, Methods for Aggregation of Reserves & Resources, Fractured Reservoir Classification & Evaluation, Sequence Stratigraphy, Petrophysics & Rock Properties, Seismic Technology, Geological Modelling, Water Saturation, Crude Oil & Natural Gas Demand, Exploration Agreements & Financial

Modelling, Seismic Survey Evaluation, Exploration Well Identification, Field Production Operation, Field Development Evaluation, Crude Oil Marketing, Core & Log Data Integration, Core Logging, Advanced Core & Log Integration, Well Logs & Core Analysis, Advanced Petrophysics/Interpretation of Cased Hole Logs, Cased Hole Formation Evaluation, Cased Hole Formation Evaluation, Cased Hole Evaluation, Cased-Hole Logging, Applied Production Logging & Cased Hole & Production Log Evaluation, Cased Hole Logging & Formation Evaluation, Open & Cased Hole Logging, Screening of Oil Reservoirs for Enhanced Oil Recovery, Enhanced Oil Recovery, Enhanced Oil Recovery Techniques, Petroleum Economic Analysis, Oil Industry Orientation, Oil Production & Refining, Crude Oil Market, Global Oil Supply & Demand, Global Oil Reserves, Crude Oil Types & Specifications, Oil Processing, Oil Transportation-Methods, Oil & Gas Exploration and Methods, Oil & Gas Extraction, Technology Usage in Industrial Security; Upstream, Midstream & Downstream Operations; Oil Reservoir Evaluation & Estimation, Oil Supply & Demand, Oil Contracts, Government Legislation & Oil Contractual Agreements, Oil Projects & Their Feasibility (revenue and profitability), Water Flooding, Reservoir Souring & Water Breakthrough, Reservoir Performance Using Classical Methods, Fractured Reservoir Evaluation & Management, Reservoir Surveillance & Management, Reservoir Engineering & Simulation, Reservoir Monitoring, Pressure Transient Testing & Reservoir Performance Evaluation, Reservoir Characterization, Reservoir Engineering Applications with ESP and Heavy Oil, Reservoir Volumetrics, Water Drive Reservoir, Reserve Evaluation, Rock & Fluid Properties, Fluid Flow Mechanics, PVT Analysis, Material Balance, Darcy's Law & Applications, Radial Flow, Gas Well Testing, Natural Water Influx, EOR Methods, Directional Drilling, Drilling Production & Operations, Field Development & Production of Oil & Gas, Wireline Logging, Mud Logging, Cased Hole Logging, Production Logging, Slick Line, Coil Tubing, Exploration Wells Evaluation, Horizontal Wells, Well Surveillance, Well Testing, Design & Analysis, Well Testing & Oil Well Performance, Well Log Interpretation (WLI), Formation Evaluation, Well Workover Supervision, Pressure Transient Analysis and Petrophysical Log Analysis. Currently, he is the CEO & Managing Director of Geo Resources Technology wherein he is responsible in managing the services and providing technical supports to underground energy related projects concerning field development, production, drilling, reservoir engineering and simulation.

Throughout his long career life, Mr. Stan has worked for many international companies such as the Kavala Oil, North Aegean Petroleum Company and Texaco Inc., as the Managing Director, Operations Manager, Technical Trainer, Training Consultant, Petroleum Engineering & Exploration Department Head, Assistant Chief Petroleum Engineer, Reservoir Engineer, Resident Petroleum Engineer, Senior Petroleum Engineer and Petroleum Engineer wherein he has been managing the evaluation of exploration wells, reservoir simulation, development training, production monitoring, wireline logging and well testing including selection and field application of well completion methods.

Mr. Stan has a Master's degree in Petroleum Engineering and a Bachelor's degree in Geology from the New Mexico Institute of Mining & Technology (USA) and from the Aristotelian University (Greece) respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership of Management (ILM) and a member of the Society of Petroleum Engineers, USA (SPE), Society of Well Log Professional Analysts, USA (SPWLA) and European Association of Petroleum Geoscientists & Engineers (EAGE). Moreover, Mr. Stan published numerous scientific and technical papers and delivered various trainings, courses and workshops worldwide.

DE0546- Page 4 of 9

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 8,000 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Unconventional Shale Reservoirs
0830 - 0900	Definition and Characteristics of Unconventional Shales • Comparison with
	Conventional Reservoirs • Importance of Shales in Global Energy Production •
	Key Challenges in Developing Shale Reservoirs
	Rock Properties in Shale Reservoirs
0800 - 0930	Porosity and Permeability in Shales • Clay Mineralogy and Its Impact on
0000 - 0550	Petrophysical Properties • Total Organic Carbon (TOC) and Its Significance
	Brittleness Index and Its Relevance
0930 - 0945	Break
	Seismic Wave Propagation in Shales
0945 - 1130	Basics of Seismic Wave Types (P-Wave, S-Wave) • Anisotropy in Shales and
	Its Implications • Seismic Velocity Relationships with Shale Properties •
	Attenuation and Dispersion in Shales
1130 – 1230	Basics of Seismic Petrophysics
	Linking Seismic Data to Petrophysical Properties • Understanding Elastic
	Moduli (Young's Modulus, Poisson's Ratio) • Density and Velocity
	Relationships in Shales • Crossplots for Seismic Property Interpretation
1230 – 1245	Break

DE0546- Page 5 of 9

1245 - 1330	Data Acquisition in Unconventional Shales
	Core Sampling and Analysis • Well Logging Techniques (e.g., Resistivity,
	Density, Sonic Logs) • Overview of Seismic Acquisition for Shales •
	Challenges of Data Acquisition in Shale Plays
1330 - 1420	Petrophysical Characterization of Shales
	Techniques for Estimating TOC • Determining Mineral Composition Using
	Spectroscopy • Understanding Water Saturation and Capillary Pressure
	Microstructure Analysis Using Imaging Tools (SEM, CT scans)
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

/ _	
0730 - 0830	Advanced Logging Tools for Shales
	Nuclear Magnetic Resonance (NMR) Logs • Spectral Gamma-Ray and
0750 - 0850	Elemental Capture Spectroscopy • Microresistivity Imaging Logs • Dipole
	Sonic Logs and Anisotropy Analysis
	Elastic Properties of Shales
0830 - 0930	Stress-Dependent Elastic Moduli • Dynamic versus Static Moduli • Role of
0830 - 0930	<i>Pore Pressure and Effective Stress</i> • <i>Laboratory Techniques for Elastic Property</i>
	Measurement
0930 - 0945	Break
	Seismic Inversion for Shale Properties
0945 – 1100	Principles of Post-Stack and Pre-Stack Inversion • Extracting Elastic
0945 - 1100	<i>Properties from Seismic Data</i> • <i>Seismic-to-Well Tie Workflows</i> • <i>Applications</i>
	in Identifying Brittleness and Fractures
	Role of Anisotropy in Shale Reservoirs
	Types of Anisotropy (Vertical Transverse Isotropy, Horizontal Transverse
1200 – 1230	Isotropy) • Measuring and Interpreting Thomsen Parameters • Impact of
	Anisotropy on Wave Propagation • Anisotropy Considerations in Fracture
	Modeling
1230 – 1245	Break
	Seismic Attributes for Shale Reservoirs
1245 – 1330	Common Seismic Attributes for Shale Interpretation • Amplitude Versus
1245 - 1550	Offset (AVO) Analysis • Curvature Attributes for Identifying Fractures •
	Frequency and Phase Analysis for Thin-Bed Detection
	Petrophysical Modeling in Shales
1330 - 1420	Building Models from Well Logs • Petrophysical Cutoffs for Unconventional
1550 - 1420	Reservoirs • Integrating Seismic and Petrophysical Models • Uncertainty
	Analysis in Petrophysical Predictions
1420 - 1430	Recap
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

DE0546- Page 6 of 9

Day 3	
0730 – 0830	<i>Basics of Geomechanics in Shales</i> Definition and Significance of Geomechanics • Key Geomechanical Parameters
	(Stress, Strain, and Pore Pressure) • Elastic and Plastic Deformation in Shales
	Importance of Geomechanics in Hydraulic Fracturing
	Stress Regimes in Shale Reservoirs
	Types of In-Situ Stresses (Vertical, Horizontal, and Differential) • Stress
0830 - 0930	Orientation and Mapping Techniques •Stress-Strain Relationships in
	<i>Unconventional Reservoirs</i> • <i>Implications for Wellbore Stability and Completions</i>
0930 - 0945	Break
	Mechanical Properties of Shales
0945 – 1100	Measurement Techniques (Uniaxial and Triaxial Tests) • Role of Mineralogy
0010 1100	in Determining Mechanical Behavior • Laboratory versus Field Measurements
	of Mechanical Properties • Time-Dependent Deformation (Creep) in Shales
	Fracture Mechanics in Shales
1200 - 1230	Natural versus Induced Fractures • Modes of Fracture Propagation (Mode I, II,
	III) • Stress Shadow Effects During Hydraulic Fracturing • Influence of Fluid Properties on Fracture Growth
1230 - 1245	Break
1250 1245	Pore Pressure & Stress Coupling
	Role of Pore Pressure in Geomechanics • Effective Stress Principle in Shales •
1245 – 1330	Methods for Pore Pressure Prediction (e.g., Eaton's Method) • Pore Pressure
	Changes During Production and Their Implications
	Geomechanical Modeling in Shales
1330 - 1420	Building 1D and 3D Geomechanical Models • Input Data Requirements and
1550 - 1420	Workflows • Calibrating Models with Field Data • Applications in Well
	Planning and Fracture Design
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
1420	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

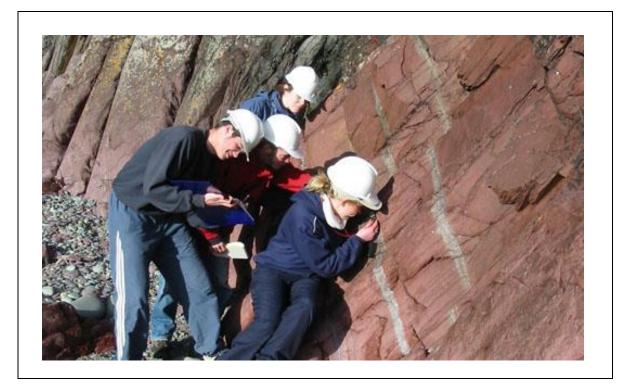
Day 4	
0730 - 0830	Hydraulic Fracturing Basics
	Key Principles of Hydraulic Fracturing • Design Parameters (Fluid Type,
	Proppant Selection, etc.) • Stages of Hydraulic Fracturing Operations •
	Challenges in Shale Fracturing
0830 - 0930	Fracture Characterization in Shales
	Techniques for Detecting Natural Fractures • Role of Fractures in Enhancing
	Reservoir Productivity • Interplay Between Fractures and Shale Anisotropy •
	Fracture Conductivity and Proppant Behavior
0930 - 0945	Break
0945 - 1100	Microseismic Monitoring
	Basics of Microseismic Event Detection • Equipment and Techniques for
	Microseismic Monitoring • Interpretation of Microseismic Data for Fracture
	Mapping • Applications in Optimizing Hydraulic Fracturing Design
1200 - 1230	Seismic Monitoring of Reservoir Changes
	Time-Lapse (4D) Seismic Surveys • Detecting Changes in Stress and Pressure
	Fields • Monitoring Production-Induced Geomechanical Changes • Challenges
	in Seismic Monitoring of Shales

DE0546- Page 7 of 9

1230 – 1245	Break
1245 - 1330	<i>Wellbore Stability Analysis</i> <i>Causes and Consequences of Wellbore Instability</i> • <i>Role of Mud Weight and</i>
	Drilling Practices • Identifying and Mitigating Wellbore Failures • Case
	Studies of Wellbore Stability in Shales
1330 - 1420	Integration of Geomechanics with Petrophysics
	Linking Geomechanical Models with Seismic and Petrophysical Data • Impact
	of Geomechanics on Reservoir Quality Prediction • Role in Optimizing
	Production Strategies • Case Studies of Integrated Workflows
1420 - 1430	Recap
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 - 0830	<i>Integrated Workflows for Shale Reservoirs</i> <i>Combining Seismic, Petrophysical, and Geomechanical Data</i> • <i>Multidisciplinary Approaches for Reservoir Characterization</i> • <i>Best Practices</i>
	for Integrating Different Datasets • Challenges in Integrated Analysis
	Shale Reservoir Simulation
0830 - 0930	Overview of Reservoir Simulation Tools • Incorporating Geomechanical and
0000 0000	Petrophysical Data into Models • History Matching and Production
	Forecasting • Case Studies of Shale Reservoir Simulations
0930 - 0945	Break
	Uncertainty Analysis in Shale Development
0945 - 1100	Sources of Uncertainty in Data and Models • Techniques for Quantifying
0040 - 1100	Uncertainty • Decision-Making under Uncertainty • Applications in Field
	Development Planning
	Emerging Technologies in Shale Development
1100 – 1230	Machine Learning and AI in Seismic and Petrophysics • Fiber Optic
1100 - 1250	Monitoring Technologies • Advances in 4D Seismic and Geomechanical
	Modeling • Nanotechnology Applications in Shale Reservoirs
1230 – 1245	Break
	Case Studies of Shale Reservoirs
	Key Insights from Major Shale Plays (e.g., Barnett, Marcellus, Permian) •
1245 – 1345	Lessons Learned from Successful and Failed Developments • Application of
	Seismic Petrophysics and Geomechanics in Real Fields • Future Directions for
	Unconventional Shale Development
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course


DE0546- Page 8 of 9

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE0546- Page 9 of 9

