

COURSE OVERVIEW ME0398 Pumps, Compressors, Turbines & Troubleshooting

CEUS

30 PDHs)

Course Title

Pumps, Compressors, Turbines & Troubleshooting

Course Date/Venue

October 20-24, 2024/Meeting Room No. 04, Four Seasons Hotel, Cairo at Nile Plaza, Cairo, Egypt

Course Reference ME0398

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide delegates with a detailed and up-to-date overview of the fluid mechanic fundamentals and operating practice of pumps, compressors and turbines. It will address aspects of both axial and centrifugal compressors. Upon the successful completion of this course, participants will have acquired the practical knowledge to enable them not only to choose the correct device for a particular application but also be in a position to resolve many commonly occurring operating problems.

The course is ideal for those personnel in the oil, gas, petrochemical, chemical, power and other process industries who require a wider and deeper appreciation of pumps, compressors and turbines, including their design, performance and operation. No prior knowledge of the topic is required. Participants will be taken through an intensive primer of turbo-machinery principles, using the minimum of mathematics, and will learn how to solve the many and varied practical industrial problems that are encountered. The course makes use of an extensive collection of VIDEO material.

ME0398 - Page 1 of 21

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply a comprehensive knowledge in pumps, compressors & turbines and troubleshoot rotating equipment in a professional manner
- Identify the different types of turbomachinery including basic design aspects and highlighted problem areas
- Minimize the compressor work by understanding the processes involved and identifying their efficiency
- Discuss the axial flow compressor and the corresponding velocity triangles including torque and power calculations
- List the different types of centrifugal machines including their design, installation, operation, maintenance, re-rate/retrofit and troubleshooting
- Recognize the various beneficial design aspects of turbomachines and understand the crucial process of cavitation in pumps
- Carryout the proper methods of centrifugal pumps installation, operation, maintenance and troubleshooting

Who Should Attend

This course provides an overview of all significant aspects and considerations of pumps, compressors and turbines for those who are involved in the design, selection, maintenance or troubleshooting of such equipment. This includes maintenance, reliability, integrity, engineering, production and operations managers, engineers and other technical staff. Project managers and engineers will also benefit from this program.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

ME0398 - Page 2 of 21

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• ***

BAC British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

ME0398 - Page 3 of 21

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

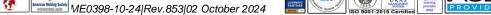
Dr. Hesham Abdou, PhD, MSc, BSc, is a Senior Mechanical & Petroleum Engineer with over 35 years of integrated industrial and academic experience as a University Professor. His specialization widely covers in the areas of Pipelines, Pumps, Turbines, Heat Exchangers, Diesel Engine Maintenance, District Cooling System, Separators, Heaters, Compressors, Storage Tanks, Valves Selection, Compressors, Tank & Tank Farms Operations & Performance, Piping & Pumping Operations, Pump Performance Monitoring, Rotor Bearing

Modelling, Hydraulic Repairs & Cylinders, Root Cause Analysis, Vibration & Condition Monitoring, Piping Stress Analysis, Crude Oil Testing & Water Analysis, Crude Oil & Water Sampling Procedures, Equipment Handling Procedures, Crude & Vacuum Process Technology, Gas Conditioning & Processing, Cooling Towers Operation & Troubleshooting, Sucker Rod Pumping, ESP & Gas Lift, PCP & Jet Pump, Pigging Operations, Electric Submersible Pumps (ESP), Progressive Cavity Pumps (PCP), Natural & Artificial Flow Well Completion, Well Testing Procedures & Evaluation, Well Performance, Coiled Tubing Technology, Oil Recovery Methods Enhancement, Well Integrity Management, Well Casing & Cementing, Acid Gas Removal, Heavy Oil Production & Treatment Techniques, Water Flooding, Water Lift Pumps Troubleshooting, Water System Design & Installation, Water Networks Design Procedures, Water Pumping Process, Oil & Gas Transportation, Oil & Gas Production Strategies, Artificial Lift Methods, Oil & Water Source Wells Restoration, Amine Gas Sweetening & Sulfur Recovery, Heat & Mass Transfer and Fluid Mechanics.

During his career life, Dr. Hesham held significant positions and dedication as the General Manager, Petroleum Engineering Assistant General Manager, Workover Assistant General Manager, Workover Department Manager, Artificial Section Head, Oil & Gas Production Engineer, District Cooling Plant Maintenance Engineer and Senior Instructor/Lecturer from various companies and universities such as the Cairo University, Helwan University, British University in Egypt, Banha University and Agiba Petroleum Company.

Dr. Hesham has a **PhD** and **Master's** degree in **Mechanical Power Engineering** and a **Bachelor's** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** and a **Peer Reviewer**. Dr. Hesham is a member of Egyptian Engineering Syndicate and the Society of Petroleum Engineering. Moreover, he has published technical papers and journals and has delivered numerous trainings, workshops, courses, seminars and conferences internationally

ME0398 - Page 4 of 21



Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 20 th of October 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Turbomachinery Highlighted Problem Areas
0930 - 0945	Break
0945 - 1000	Ideal Gas Equation & Practical Application Isentropic Processes • Property Diagrams Involving Entropy
1000 – 1100	<i>Isentropic Processes of Ideal Gases</i> Constant Specific Heats • Relative Pressure and Relative Specific Volume
1100 - 1230	Minimizing Compressor WorkPolytropic Processes • Multi-Stage Compression with Inter-Cooling • IsentropicEfficiency of Turbines • Isentropic Efficiency of Compressors and Pumps
1230 - 1245	Break
1245 – 1330	Momentum & Bernoulli's RelationsGeneral Relationship • Relationships for Incompressible Fluids
1330 - 1420	VIDEO: Basic Pump Types & Technology
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Monday, 21 st of October 2024
0730 – 0800	General Description of Turbomachines
0750 - 0800	Centrifugal Pump • Centrifugal Turbine • Centrifugal Air Compressor
0800 - 0830	Impulse Turbine
0800 - 0850	Velocity Triangles
	Axial Flow Compressor
0830 - 0900	Velocity Triangles • Torque Calculation and Torque Coefficient • Power Calculation
	and Power Coefficient
0900 - 0930	Centrifugal Machines
0900 - 0930	Torque Calculation • Head Coefficient • Flow Coefficient • Torque Coefficient
0930 - 0945	Break
0945 - 1015	Performance Curves
	Centrifugal Pump
1015 - 1100	Centrifugal Multistage Pump • Mixed Flow Machines • Centrifugal Air
	Compressor
1100 1120	Affinity Laws
1100 – 1130	Effect of Impeller Speed • Effect of Impeller Diameter
1130 – 1200	Specific Speed
1200 - 1230	Specific Radius
1230 - 1245	Break
1245 - 1315	Hydraulic Turbines
1315 - 1330	VIDEO: Fundamentals of Pump Performance 1
C CASN iln	

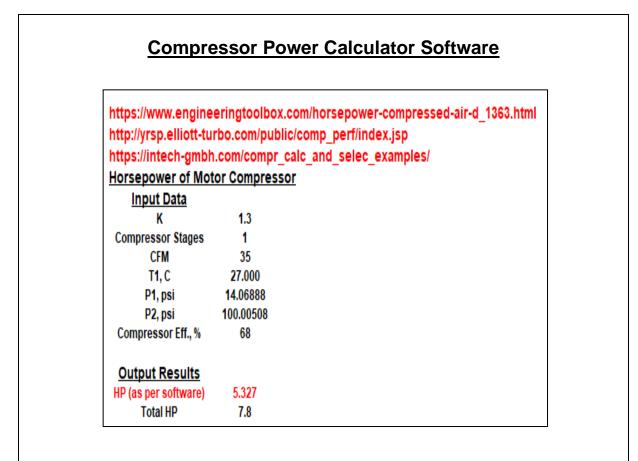
	Design Aspects of Turbomachines
1330 – 1400	Linear Cascades • Radial Cascades • Three- Dimensional Aspects of Axial- Flow
	Machines • Elementary Design Considerations
1400 – 1420	Cavitation
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3:	Tuesday, 22 nd of October 2024
	Centrifugal Pumps Basics
0730 - 0930	Types of Centrifugal Pumps • Self- Priming Pumps • Specific Speeds • Suction
	Specific Speed • Best Efficiency Point • Affinity Laws
0930 - 0945	Break
	Centrifugal Pump Design
0945 – 1100	Balancing Disc • Impeller NPSHR • Impeller Centre-Rib • Mechanical Seals •
	Velocity Head
	Pump Sales
1100 – 1230	Affinity Laws •Pump Software • Suction Lift • Viscosity • Re-Rate/Retrofit •
	Head-Rise • Radial/Horizontal Split Case
1230 - 1245	Break
1245 - 1330	Centrifugal Pump Installation
1245 - 1550	Foundation • Soft Foot • Suction Pipe • Suction Strainer
1330 – 1420	VIDEO: Fundamentals of Pump Performance 2
1550 - 1420	Discussion Forum
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4:	Wednesday, 23 rd of October 2024
	Centrifugal Pump Operation
0730 - 0930	Start-Up • Minimum Flow • Maximum Pump RPM • Motor Amps/Specific
	Gravity • Entrained Gas
0930 - 0945	Break
0945 - 1100	Centrifugal Pump Operation (cont'd)
0945 - 1100	Operation at Shut Off • Temperature-Rise • Thermal Shock
1100 – 1230	Centrifugal Pump Maintenance
1100 - 1250	Case Gasket • Checking for Wear Clearance • Oil Change • Storage
1230 – 1245	Break
1245 - 1315	Centrifugal Pump Re-Rate/Retrofit
1245 - 1515	Impeller Cut • NPSH • De-Staging • Electric Motor Sizing • Viscosity Changes
1315 – 1420	VIDEO: Hydraulic Loads, Critical Speed & Torque
1313 - 1420	Discussion Forum
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

ME0398 - Page 6 of 21

AWS

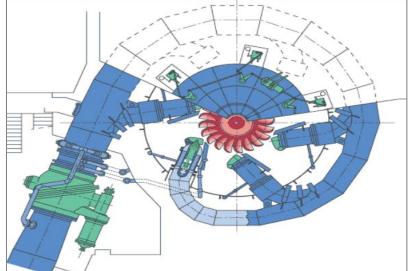


Day 5:	Thursday, 24 th of October 2024
0730 - 0830	Centrifugal Pump Troubleshooting
0750 - 0850	Bearing Failures • Bearing Housing Oil Leakage • Cavitation Noise and Damage
0830 - 0930	VIDEO: Bearings, Seals & Couplings
0930 - 0945	Break
	Centrifugal Pump Troubleshooting (cont'd)
0945 – 1100	Impeller Cavitation/Erosion • Vibration • Cracked Volute Tongues • NPSH •
	Viscosity Effects
1100 – 1230	Group Discussions
1230 – 1245	Break
1245 – 1345	VIDEO: Special Pump Topics & Final Discussion
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Simulator (Hands-on Practical Sessions) Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using various online system calculator."

ME0398 - Page 7 of 21



Haward Technology Middle East

<u>Turbines</u>

MEU3350 - ME0398-10-24|Rev.853|02 October 2024

Section of Pelton Turbine

Design rules

The specific speed η_s parameter is independent of a particular turbine's size.

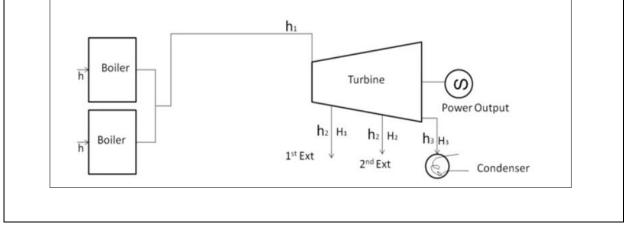
Compared to other turbine designs, the relatively low specific speed of the Pelton wheel implies that the geometry is inherently a "low gear" design. Thus it is most suitable to being fed by a hydro source with a low ratio of flow to pressure (meaning relatively low flow and/or relatively high pressure).

The specific speed is the main criterion for matching a specific hydro-electric site with the optimal turbine type. It also allows a new turbine design to be scaled from an existing design of known performance.

 $\eta_s = n \sqrt{P} / \sqrt{\rho} (gH)^{5/4}$ (dimensionless parameter), ^[9]

where:

.....


- n = Frequency of rotation (rpm)
- *P* = Power (W)
- *H* = Water head (m)
- ρ = Density (kg/m³)

The formula implies that the Pelton turbine is *geared* most suitably for applications with relatively hig exponent being greater than unity, and given the characteristically low specific speed of the Pelton.^[1]

https://www.youtube.com/watch?v=3nnFlqUDIzY

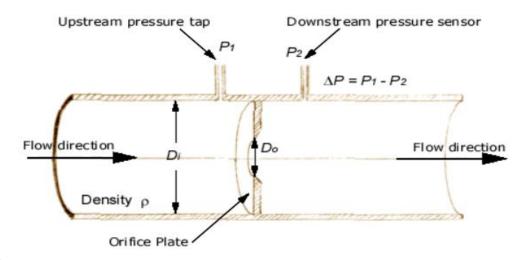
Calculations for Steam Turbine

The process flow diagram for cogeneration plant is shown in this figure . The following calculation procedures have been provided in this section.

ME0398 - Page 9 of 21

D - 203 ischer L - 553 ischer L - 553 ischer J - 102 ischer Millo - 102 ischer	Element of pipe Croce foreget process in a second				
Tank Volume Calculator	Pressure Drop Online-Calculator				
Nozzle Discharge Pressure:	Input Data in Black Color Output Data in Black Color Nozzle orifice site, in. 0.013 Pressure, K pai 40 Nozzle Dish. Coeff. 0.72 Pressure, bar 2757.9 gpm 0.73 bbl/d 24.899				
psi ↓	SPRAY BAR NOZZLE CONFIGURATION CHART Weterbasting Technologies, Inc. Stray Barlingtic Conferentiation Developes Strat. Ender Hog Models				
Diameter:	High Schecke Nozzle Fire Churt - FLOW - GPM 8 Pressure Indicated Ovilice 20KPGI 26KPGI 38KPGI 36KPGI 48KPGI Dav/m (172m Bar) (172m Bar) (norm Bar) (200 Bar) (200 Bar) (200 Bar) 0 000 0.06 0.09 0.05 0.10 0.11				
CALCULATE	0.000 0.00 0.00 0.11 0.11 0.006 0.14 0.12 0.12 0.15 0.15 0.007 0.15 0.17 0.18 0.20 0.24 0.20 0.008 0.19 0.22 0.24 0.26 0.26 0.26 0.008 0.19 0.28 0.38 0.36 0.85				
Flow Rate:	0:010 0:30 0:37 0:41 0.45 0:011 0:37 0:42 0:45 0:49 0:53 0:012 0:44 0:59 0:54 0:56 0:62 0:013 0:51 1:59 0:65 0:69 0.73				
lpm 👃	0.014 0.60 0.68 0.73 0.60 0.54 0.015 0.08 4.78 0.46 0.50 4.87				
Nozzle Discharge	Nozzle Calculator				
The horsepower required to adiabatic compression of air can be calculated with the calculator below: 1 N - number of stages 1 V - volume flow of compressed air at atmospheric pressure (cfm, ft ³ /min) 1.41 k - adiabatic expansion coefficient 214.7 P ₂ - absolute final pressure (psi)					
Horsepower Calcula Input Data	Units SI(bar)				
Primary Pressure	0 barG V				
Secondary Pressure	0 barG V				
Diameter of Orifice	0 mm ~				
Water Flow Rate through an 0	Drifice Calculator				

ME0398 - Page 10 of 21


Oil Equivalent Inter data in given fields and click on Calculate for resultant corrosion rate. Weight Loss Density microgm gm/cm3 Area Time Calculate Result:						
<form></form>	Convert Cubic Feet Of Natural Gas to Barrels Of	Corrosion Rate Calculator				
	Oil Equivalent	Enter data in given fields and click on Calculate for resultant corrosion rate.				
<form></form>		-				
<form></form>		microam ¥				
		gm/cm3 V				
		mm2 ¥				
		millisec v				
		Calculate				
	Cubic Feet Of Natural Gas Barrels Of Oil Equivalent (bboe)					
Image: static stati	0					
Image: static stati						
intermediation intermediation intermediation intermedia	Cubic Feet Calculator	Corrosion Rate Calculator				
intermediation intermediation intermediation intermedia						
intermediation intermediation intermediation intermedia	HYDRONICS CALCULATOR					
Image: A constraint of the second of the						
Image: the second process of the second proces of the second proces of the second process of the seco	resortion fairs gamp					
Image: real real real real real real real real		Pressure at A (absolute): 100 kPa V				
Image:		Average fluid velocity in pipe, V. 1				
Image: big is a constraint of the state is a constraint of the	Minimum pipe diameter calculator	Pipe diameter, D: 10 cm 🗸				
Image: the second process of the second proces of the second proces of the second process of the se	mane Pane Ban (pan) per mane watch (them) ban	Pipe relative roughness_e/2: 0 m/m v				
With the statistic is a s		Pipe length from A to B, L: 50 m 💌				
Fund density, in in in it with straight water. Fund density, in in it with straight water. Fund de	Water flow rate calculator	Elevation gain from A to B, sz: 0 m 💌				
Image: Image	No famous strong	Fluid density, p: 1 kg1 v				
Hydronics Calculator Pipe Pressure Loss Calculator BTU-Calculator-&-BTU-Formulas-for-Water-Circulating-Heat-Transfer¶ Weighed Water Test Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula Du = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute Inlet Water Temperature To Process GPM '*F Outlet Water Temperature From Process	C + ppm	Fluid viscosity (dynamic), µ: 1				
BTU-Calculator-&-BTU-Formulas-for-Water-Circulating-Heat-Transfer¶ Weighed Water Test Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute Inlet Water Temperature To Process Outlet Water Temperature From Process GPM *F *F						
BTU-Calculator-&-BTU-Formulas-for-Water-Circulating-Heat-Transfer¶ Weighed Water Test Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute Inlet Water Temperature To Process Outlet Water Temperature From Process GPM *F *F						
Weighed Water Test Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Inlet Water Temperature To Process GPM *F	Hydronics Calculator	Pipe Pressure Loss Calculator				
Weighed Water Test Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Inlet Water Temperature To Process GPM *F						
Weighed Water Test Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Inlet Water Temperature To Process GPM *F						
Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Inlet Water Temperature To Process GPM *F	BTU·Calculator·&·BTU·Formulas·fo	r·Water·Circulating·Heat·Transfer¶				
Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Inlet Water Temperature To Process GPM *F	Weighed Water Test					
exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute GPM 'F 'F 'F	Measure the flow of water through your process by tir					
BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute GPM *F Outlet Water Temperature From Process						
changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Galions Per Minute GPM 'F 'F 'F		The second se				
Water Flow Rate In Gallons Per Minute Inlet Water Temperature To Process Outlet Water Temperature From Process GPM *F						
GPM *F	BTU Calculator for Weighed Water Test					
	Water Flow Rate In Gallons Per Minute Inlet Water Ten	nperature To Process Outlet Water Temperature From Process				
BTU Calculator	GPM	*F F				
BTU Calculator						
BTU Calculator						
	BTU Calo	culator				

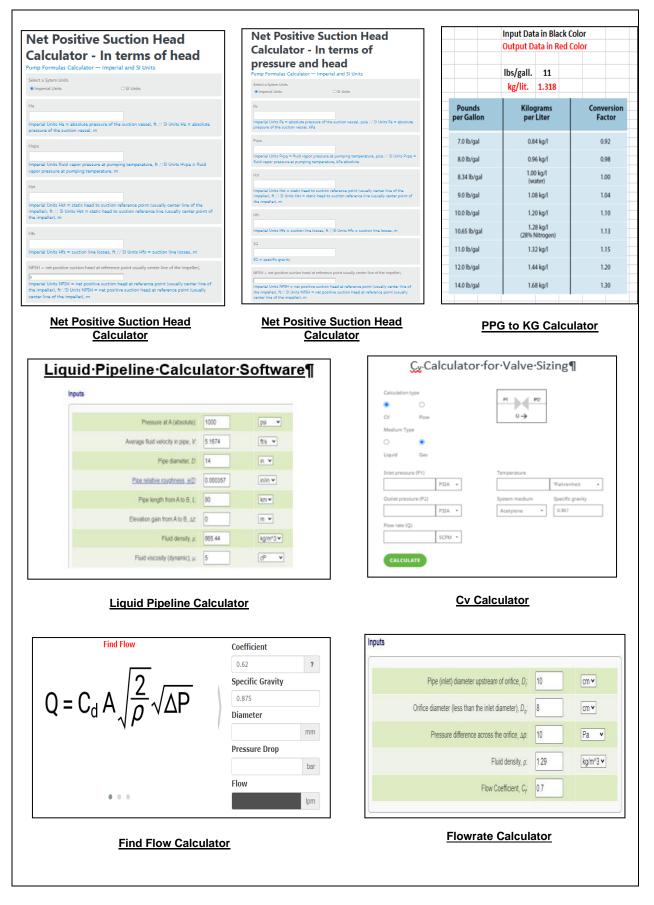
ME0398 - Page 11 of 21

Inputs

Pipe (inlet) diameter upstream of orifice, <i>D</i> _i :	8	in 🗸
Orifice diameter (less than the inlet diameter), D_o :	3	in 🗸
Pressure difference across the orifice, Δp :	20	psi 🗸
Fluid density, p:	835	kg/m^3 🗸
Flow Coefficient, C _f :	0.82	

Answers

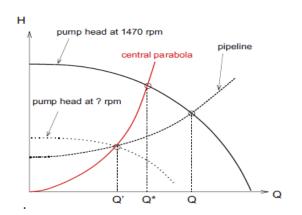
Velocity at the inlet, V_i :	2.10 m/s	m/s 🗸
Volumetric Flowrate, Q:	1080 gpm	gpm 🗸
Mass Flowrate:	56.7 kg/s	kg/s ∨


Flow Rate through an Orifice or Valve Calculator

ME0398 - Page 12 of 21

ME0398 - Page 13 of 21

	Coefficient.of.Dischar	Re-carculator II	
	Calculate discharge coefficient		
	using	hydraulic head 💌	
	Water level		
	Flow parameters		
	Diameter (d)	<u>m •</u>	
	Area (A)	<u>m² •</u>	
	Head (H)	<u>m.*</u>	
	Actual discharge (Q)	<u>m³/s *</u>	
	Coefficient Discharge	e Calculator	
Convert ho	rsepower hour to gallon [U	.S.] of diesel oil	
Convert ho	rsepower hour to gallon [U	S.] of diesel oil	
Convert ho	rsepower hour to gallon [U	1	sel o
Convert ho		horsepower hour	sel o


ME0398 - Page 14 of 21

Liquid Pumping Program		Output Results	
		Flow Velocity, ft/s	5.0154
<u>Input Data</u>		Erosion Velocity, ft/s	13.440
API	28	E/I.D.	0.001786
c.P.	5	sp.gr.	0.8871
1000 bbl/d	3.3	Re	19290.3
	2.4384	F	0.02987
Length, km		Hf, psi	153.67
I.D., in.	2.800	Hf, m water	108.17
Rough. (E), in.	0.005	Total Pump Dich. psi	276.68
Difference in elev., m	50	TDP, psi	196.68
Destination press., psi	60	Hydr. Power, HP	16.99
Pump Suc. psi	80	Hydr. Power, Kw	12.67
· · ·		Shaft Power, HP	18.88
Overall Pump Eff., %	65	Shaft Power, Kw	14.083
Motor Eff., %	90	Nama Plate Motor HP	23.60
Motor Loading %	80	Nama Plate Motor Kw	17.60

A pump running at 1470[*rpm*] with $H_{pump} = 45 - 2781Q^2$ head delivers water into a pipeline with $H_{pipe} =$ $20 + 1125Q^2$. Calculate the required revolution number for the reduced flow rate $Q' = 0.05[m^3/s]$.

Solution:

- The actual working point is given by the solution of $H_{pump} = H_{pipe}$, which gives $Q = 0.08[m^3/s]$ and H = 27.2[m].
- Affinity states that while varying the revolutionary speed, H/n^2 and Q/n remain constant. Thus, also H/Q^2 remains constant, let's denote this constant by a. So, while varying the revolutionary speed, the working point moves along the central parabola (see figure), given by $H_{ap} = a Q^2$.

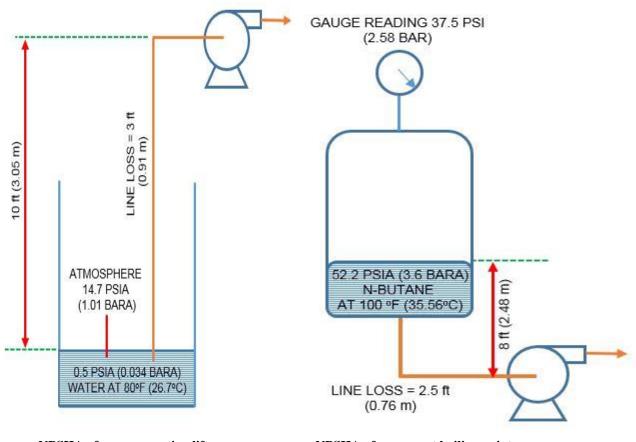
However, as Q' is given and we also know that this point has to be located on the pipeline characteristic, we know that $H' = 20 + 1125 \times 0.05^2 = 22.81[m]$. Thus, the parameter of the affine parabola is $a = H'/Q'^2 =$ 9125.

 Q^* is given by the intersection of the affine parabola and the original pump characteristic: $H_{ap}(Q^*) =$ $H_{pump}(Q^*)$, which gives $Q^* = 0.06148[m^3/s]$ with $H^* = 34.5[m]$.

Now we can employ affinity between Q^* and Q':

$$n' = n^* \frac{Q'}{Q^*} = 1470 \times \frac{0.05}{0.06148} = 1195.5[rpm]$$

and just for checking the calculation


$$H' = H^* \left(\frac{n'}{n^*}\right)^2 = 34.5 \times \frac{1195.5^2}{1470^2} = 22.81[m].$$

ME0398 - Page 15 of 21

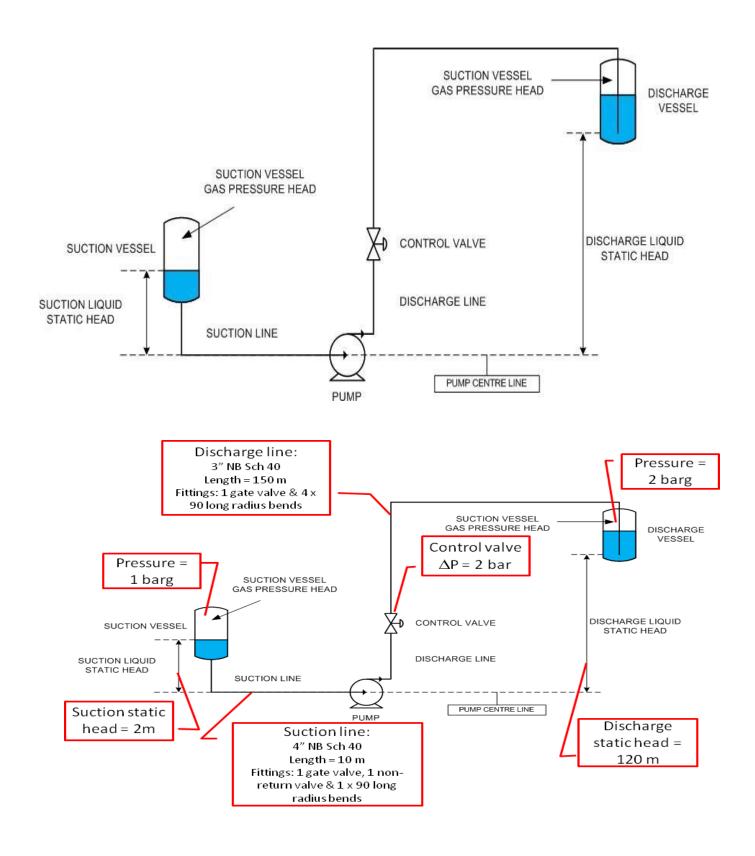
NPSHA of pump – suction lift

NPSHA of pump – at boiling point SG of n-butane at 100 deg F = 0.56

NPSHA = Hatmp.+/- Hs – Hf – Hvap.

https://engineeringunits.com/net-positive-suction-head-calculator/?utm_content=cmp-true

http://www.pressure-drop.com/Online-Calculator/index.html


NPSH Calculations		Output Results	
Input Data		Flow Velocity, ft/s	2.6620
API	36	=E/I.D.	0.001671
c.P.	3	sp.gr.	0.8448
Vapor pressure, psi	10	Re	17363.9
Atmp. Pressure, psi	14.7		
Height above pump, ft	20	F	0.0302
1000 bbl/d	2.0	Hf, psi	0.048
Length, km	0.003	Hf, ft water	0.111
I.D., in.	2.992	NPSHA, ft oil	32.72
Rough. (E), in.	0.005	NPSHA, ft water	27.64

ME0398 - Page 16 of 21

ME0398 - Page 17 of 21

Calculator

PUMP DETAILS

Pump tag number Suction vessel tag number Discharge vessel tag number Barometric pressure NPSH available margin Pump efficiency	P-001 V-001 V-002 Patm 1.013 bara H _{margin} 0 m 7 70%
FLUID PROPERTIES	
Fluid Phase Flowrate Density Viscosity Vapour pressure	Water Liquid m 30000 kg/hr ρ 998 kg/m3 μ 1 cP P _{vap} 0.023 bara
VESSEL GAS PRESSURES	
Suction vessel gas pressure Discharge vessel gas pressure	P _{suc_vessel} 1 barg P _{dis_vessel} 2 barg
STATIC HEADS	
Suction static head Discharge static head	H _{suc_static_head} 2 m H _{disstatic_head} 120 m
PIPELINES	

	Suction Line		Discharge Line	
Pipe nominal diameter		4 🗸	3 🗸	inch
Pipe schedule		Sch 40 💙	Sch 40 🛩	
Pipe internal diameter	d	102.26	77.92	mm
Pipe length	L	10	150	m
Absolute roughness	е	0.046	0.046	mm

OUTPUTS

Volumetric flow rate

Q

30.060 m3/hr

		Suction Line	Discharge Line	
Relative roughness	e:d	0.00045	0.00059	
Flow area	Α	0.00821	0.00477	m2
Velocity	u	1.02	1.75	m/s
Reynolds No.	Re	103758	136170	
Flow regime		turbulent	turbulent	
Friction factor	f	0.02011	0.02010	
Pipe velocity head loss	K pipe	1.966	38.695]
Fittings total velocity head loss	K _{fittings}	1.724	2.152	
Frictional pressure loss		0.02	0.62	bar
Frictional head loss	H _{friction}	0.19	6.38	m

Pump suction pressure	Psuction	2.19 bara
Pump suction head	H _{suction}	22.37 m
Pump discharge pressure	Pdischarge	15.39 bara
Pump discharge head	H discharge	157.16 m
Net positive suction pressure available	PNPSHA	2.17 bara
Net positive suction head available	NPSHa	22.13 m
Pump total differential pressure	ΔP _{pump}	13.20 bar
Pump total differential head	Hpump	134.79 m
Pump absorbed power	E	15.74 kW

ME0398 - Page 18 of 21

Results of above calculations may be confirmed through either of followinglinks:

https://www.swagelok.com/en/toolbox/cv-calculator

https://experttoolsonline.com/danfoss/orifice_calculator

https://www.efunda.com/formulae/fluids/calc_orifice_flowmeter.cfm

https://www.omnicalculator.com/physics/coefficient-of-discharge

<u>Power</u> <u>Calculations:</u> https://inventory.powerzone.com/resources/centrifugal-pump-powercalculator/%3Aflu%3DGPM%3Apru%3DHEAD%20FT%3Apu% 3DHP

http://irrigation.wsu.edu/Content/Calculators/General/Required-Water-Pump-HP.php

Required Compressor Horsepower

https://www.engineeringtoolbox.com/horsepower-compressed-air-d_1363.html

Input Data		Output Results	
T1, F	60		
к	1.35	Compression Ratio	34.014
P1, psi	14.7	Cp, J/kg/K	1107
P2, psi	500	Gas, cfm	36791.50
Gas sp.gr.	1	•	
No. of Comp. stages	3	Gas, kg/s	21.250
Gas million SCMD	1.5	Theoretical Power, HP	9731.847
Eff. of Gas Comp., %	85	Total Demuined UD	10701 07
Eff. of Driving Motor, %	90	Total Required HP	12721.37

Heater Duty

https://www.advantageengineering.com/fyi/288/advantageFYI288.php

		Output Results	
Input Data		Delta Temp., C	15.6
input butu		Mega Watt	0.220
Million DTH/hr	0.75	Billion Joule/hr.	0.791
Million BTU/hr.	0.75	gpm	25.0
ADI	10.0	gallon/hr.	1498.4
API	10.0	Lit./min.	94.5
Constitution DTU/lb/C	1 00	m3/hr.	5.7
Specific Heat, BTU/lb/F	1.00	1000 bbl/d	0.856
Dalta Tawa C	C 0	Required Diesel Lit./day	502.90
Delta Temp., F	60	Required Diesel bbl/d	3.16
llester Fff 0/	100	Required Gas, 1000 ft3/d	16.364
Heater Eff., %	100	Required crude oil, bbl/d	3.268

https://www.enggcyclopedia.com/2011/09/problem-solving-heat-exchangertubeside-pressure-drop-calculation/

ME0398 - Page 19 of 21

Input Data		Output Results	
Mass Flow Rate, kg/hr.	2000.0	cm3/s	562.303
Fluid Density, Kg/m3	988.0	V, cm/s	110.9720
Visc., c.P.	0.53	Re	52544.59
Pipe Diameter (D), in.	1	f	0.0261
Roughness (E), mm	0.045	Total Hf, cm (per single tube)	22.5583
Tube Length, m	3.5	Total Hf, psi (per single tube)	0.3166
No. of tubes	1	Total Hf, bar (per single tube)	0.0218

Heat exchanger tube side pressure drop calculation

Calculate the tube side pressure drop for the following heat exchanger specification,

Process fluid = water Inlet pressure = 4 barg Inlet temperature = 50°C Outlet temperature = 30°C Tubeside flowrate = 50000 kg/hr Number of tubes = 25 Tube ID (internal diameter) = 1 inch Tube length = 3.5 m

Total volumetric flow = 50000 kg/hr \div 988.0 kg/m³ = 50.61 m³/hr Volumetric flow in each 1" tube = 50.61 \div 25 = 2.02 m³/hr Pressure loss per unit length of the tube is then calculated using EnggCyclopedia's pressure drop calculators for pipes and tubes. This calculator is based on Darcy-Weisbach equation.

Pressure loss across a single tube ($\Delta P/L$) = 6.17 bar/km

·····		
SINGLE PHASEFLOW INPUTS		
W – <u>Mass</u> flow capacity	2000	kg/h
$\rho - \underline{Density}$ of fluid	988	kg/m ³
$\mu - \underline{\text{Viscosity}}$ of fluid (either liquid or gas)	0.53	cP
PIPE SPECIFICATIONS		
e – Effective roughness of the pipe	0.045	mm
d – Nominal diameter of the pipe	1	inches
sch – <u>pipe schedule</u>	STD	
Calculate pressure loss	Reset	
RESULTS		
Fluid Velocity	1.110	<u>m/s</u>
Volumetric flow	2.02	m ³ /hr
Reynold's No.	52557.9	
Pressure loss	6.1715	<u>bar</u> /km

Tube length (L) = 3.5 m Tubeside pressure drop (ΔP) = 6.17 × 3.5 / 1000 = 0.0216 bar

ME0398 - Page 20 of 21

Another alternative is to directly use EnggCyclopedia's Heat Exchanger Tube side Pressure Drop Calculator. All the inputs given in the sample problem statements are given to the calculator and pressure drop across the tubeside is calculated as output. This calculator uses the same basic steps discussed above and hence the answer also matches with the figure above (0.0216 bar). The following image is a snapshot of this direct calculation of tubeside pressure drop.

Exchanger tubeside pressure drop

Tubeside inputs		
Total tubeside mass flow	50000	kg/hr
Tubeside Density	988	kg/m ³
Tubeside Viscosity	0.53	сP
Number of tubes	25	
Total tube length (accounting for all tube passes)	3.5	m
Tube nominal diameter	1	inches
Tubeside roughness	0.045	mm
Calculate pressure drop	Reset	
Results		
Tubeside pressure drop	0.0216	bar

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

ME0398 - Page 21 of 21

