

COURSE OVERVIEW PE0899 Refinery Optimization

Course Title

Refinery Optimization

Course Date/Venue

Session 1: August 03-07, 2025/Crowne Meeting Room, Crowne Plaza Al Khobar, KSA

Session 2: November 02-06, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai UAE

Course Reference

PE0899

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

The demand for petroleum products is increasing throughout the world. Traditional markets such as North America and Europe are experiencing moderate increase in demand, whereas the other emerging markets are witnessing a rapid surge. This has resulted in a squeeze on existing refineries, prompting a fresh technological approach to optimize efficiency and throughput. Major oil companies and technology suppliers/licensors are investing heavily to revamp their refining technologies in an effort to cater to the growing needs of customers.

Even though the nature of crude oil is changing, refineries are here to stay in the foreseeable future, since petroleum products satisfy wide-ranging energy requirements/demands that are not fully catered to by natural gas, liquefied petroleum gas (LPG), or coal. Refineries are eager to adapt to changing circumstances and are amenable to trying new technologies that are radically different in character. This is evident from the increasing use of different types of refinery process technology and novel separation methods.

This course is designed to provide participants with a complete and up-to-date overview of refinery optimization. On completion of the course, participants will gain a satisfactory understanding of the concepts of optimization fundamentals, design optimization, planning optimization, equipment optimization, process optimization, operations optimization, optimizing process controls, optimizing reliability, optimizing offsites operations, continuous improvement and integrated supply chain optimization. Actual case studies from around the world will be demonstrated to highlight the topics discussed.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on refinery optimization
- Define and identify the basic optimization fundamentals and tools
- Illustrate breakeven analysis, graphical methods, numerical methods, incremental methods, linear programming, quadratic programming and non-linear optimization techniques
- Describe global and local optima and optimize the design through NP maximization and configuration optimization
- Discuss integer programming, capacity creep and plant debottlenecking
- Optimize operations planning covering linear programs and non-linear models, optimizing unit performance and scheduling
- Apply equipment optimization and process optimization
- Optimize process operations and identify the parameters for optimization, crude unit cut points, reformer severity, FCC conversion and other key parameters
- Integrate unit performance, describe the utilities and process controls and differentiate analogue controls versus digital controls as well as feed-back versus feed-forward controls
- Determine DCS and advanced controls, process analyzers, off-line optimization, real time online optimization, multivariable process control and inferential controls and dynamic versus steady-state
- Optimize reliability and apply RCFA, logic diagrams and fault trees, turnaround planning, materials inventory management, management and information systems, risk management and optimization
- Employ offsite operations optimization, offsites design, storage facilities operation, utilities management, inventory management and blending optimization
- Carryout continuous improvement for lean manufacturing, kaisan and six sigma, benchmarking and best practices and plant optimization versus supply chain optimization
- Identify the elements of supply chain and discuss optimization trends and crude unit optimization

Who Should Attend

This course provides an overview of all significant aspect and considerations of refinery optimization for managers, leaders, section heads, superintendents, supervisors, process engineers, production engineers, plant engineers, planning engineers and operators.

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED PROVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Geoffrey Frampton, BSc, PMI-PMP, CSSBB, is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Process Unit Operations & Maintenance, Operations Asset Process Plant Start-up & Commissioning, Process Plant Monitoring, Process Plant Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Integrity,

Flare, Blowdown & Pressure Relief Systems Operation, Maintenance & Troubleshooting, Dynamics of the Petrochemicals Industry, Understanding the Global Petrochemical Industry, Petrochemicals Analysis, Naphtha & Condensate in Petrochemicals, Feedstock Handling & Storage, Natural Gas Liquids & Petrochemical Industry and Markets, Refinery & Process Industry, Refinery Optimization, Refinery Operations Troubleshooting, Refinery Production Operations, Refinery Process Safety, Process Safety Design, Petroleum Refinery Process, Asset Operational Integrity, Refinery Induction, Crude Distillation, Crude Oil Properties, Distillation Column Operation & Control, Oil Movement Storage & Troubleshooting, Root Cause Analysis (RCA) for Process & Equipment Failures, Process Equipment Design, Applied Process Engineering Elements, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Clean Fuel Technology & Standards, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Acid Plant Revamp and Crude Pumping. Further, he is also wellversed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site Engineering** Manager, Senior Project Manager, Project Engineering Manager, Construction Manager, Site Manager, Area Manager, Procurement Manager, Factory Manager, Technical Services Manager, Senior Project Engineer, Project Engineer, Assistant Project Manager, Handover Coordinator and Engineering Coordinator from various international companies such as the Fluor Daniel, KBR South Africa, ESKOM, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, Worley Parsons, Lurgi South Africa, Sasol, Foster Wheeler, Bosch & Associates, BCG Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a Bachelor's degree in Industrial Chemistry from The City University in London. Further, he is a Certified Project Management Professional (PMI-PMP), a Certified Six Sigma Black Belt (CSSBB) from The International Six Sigma Institute, a Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM), a Certified Instructor/Trainer and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0845	Optimization Fundamentals Definitions and Basic Optimization Tools • Breakeven Analysis • Graphical Solutions • Numerical Methods
0845 – 0930	Optimization Fundamentals (cont'd) Incremental Method • Linear Programming (LP) • Quadratic Programming (QP) • Non-Linear Optimization Techniques • Global & Local Optima
0930 - 0945	Break
0945 – 1230	Optimizing the Design Maximizing NP • Configuration Optimization • Integer Programming (IP) • Capacity Creep • Plant Debottlenecking
1230 - 1245	Break
1245 – 1420	Optimizing Operations Planning Linear Programs (LP) and Non-Linear Models • Optimizing Unit Performance • Scheduling
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

Day Z	,
0730 – 0930	Equipment Optimization
	Heaters/Pumps/Compressors/Heat Exchangers • Critical Parameter
	Monitoring for Maximum Utilization and Optimization for each Specific
	Equipment • Resources Optimization like Catalyst/Chemicals/Utilities •
	Operation
0930 - 0945	Break
	Process Optimization
	IOW • Key Process Parameter Monitoring and Controlling for Maximum
	Utilization and Optimization for each Area Process • Conversions Losses and
0945 – 1100	Yield Monitoring • Interactions of the Key Parameters Between Processes •
	Improving Unit Reliability • Reducing Refinery Losses, Energy Conservation
	• Reducing Flare/Slop Process
	Optimizing Process Operations
1100 1015	, , ,
1100 – 1215	Key Parameters for Optimization • Crude Unit Cut Points • Reformer
	Severity
1215 – 1230	Break
1230 – 1420	Optimizing Process Operations (cont'd)
	Key Parameters for Optimization • Crude Unit Cut Points • Reformer
	Severity
1420 – 1430	Recap
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 - 0930	Optimizing Process Operations (cont'd)
	FCC Conversion • Other Key Parameters • Integrating Unit Performance •
	Utilities
0930 - 0945	Break
0945 – 1100	Optimizing Process Controls
	Analogue Controls versus Digital Controls • Feed-back & Feed-forward
	Controls • DCS (Distributed Control Systems) & Advanced Controls •
	Process Analyzers
	Optimizing Process Controls (cont'd)
1100 1015	Off-line Optimization • Real Time Online Optimization • Multivariable
1100 – 1215	Process Control and Inferential Controls • Dynamic versus Steady-State •
	Statistical Process Control
1215 – 1230	Break
	Optimizing Process Controls (cont'd)
1220 1420	Off-line Optimization • Real Time Online Optimization • Multivariable
1230 – 1420	Process Control and Inferential Controls • Dynamic versus Steady-State •
	Statistical Process Control
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

Duy +	
0730 – 0930	Optimizing Reliability Root Cause Failure Analysis • Logic Diagrams & Fault Trees • Turnaround Planning
0930 - 0945	Break
0945 – 1100	Optimizing Reliability (cont'd) Materials Inventory Management • Management & Enterprise Information Systems • Risk Management & Optimization
1100 – 1215	Optimizing Offsites Operations Offsites Design • Storage Facilities Operation • Utilities Management
1215 - 1230	Break
1230 - 1420	Optimizing Offsites Operations (cont'd) Offsites Design • Storage Facilities Operation • Utilities Management
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 - 0930	Optimizing Offsites Operations (cont'd) Inventory Management • Blending Optimization
0930 - 0945	Break
0945 – 1100	Continuous Improvement Lean Manufacturing • Kaisan and Six Sigma • Benchmarking and Best Practices • Plant Optimization versus Supply Chain Optimization

	Continuous Improvement (cont'd)
1100 – 1215	Elements in Supply Chain • Summary of Refinery Optimization Trends •
	Crude Unit Optimization Case Study
1215 - 1230	Break
	Continuous Improvement (cont'd)
1230 - 1330	Elements in Supply Chain • Summary of Refinery Optimization Trends •
	Crude Unit Optimization Case Study
	Course Conclusion
1330 - 1345	Using this Course Overview, the Instructor(s) will Brief Participants about t
	Topics that were Covered During the Course
1345 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

