

COURSE OVERVIEW ME0100 Valves - Selection, Maintenance, & Repair

Course Title

Valves - Selection, Maintenance & Repair

Course Reference

ME0100

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	June 15-19, 2025	Safir Meeting Room, Divan Istanbul, Turkey
2	August 10-14, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
3	October 26-30, 2025	Olivine Meeting Room, Fairmont Nile City, Cairo, Egypt

CEUS

(30 PDHs)

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt in the class will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Valve Selection, Installation & Maintenance. It covers the lubrication fitting and categorizing valves based on their function; the valve symbols, hydraulic pneumatic valves, motor, cylinders and directional control valves; the solenoid valve, typical valve and other valve designs; the various types of pressure control valves, check valves and control valve; and the characteristics of valve and control valve selection and sizing.

Further, the course will also discuss the control valve performance, process considerations, actuators and positioners; the fundamentals of pressure relief devices including the advantages and disadvantages of conventional valve and balanced bellows valve; the piston type pilot operated safety relief valve; the wetted area, heat absorption, vaporization rate and relief vent area; the causes of chatter, staggered PSV's and valve critical inspection, maintenance and testing; and the PRV repair and non-destructive testing including disc dismantling, assembly and disassembly.

ME0100 - Page 1 of 11

During this interactive course, participants will learn the lapping procedure, grinding, assembly, valve sealing, installation, maintenance, troubleshooting and galling; the common valve problems, potential causes and water hammer; the valve testing and sealing, PRV adjustments, digital communications, cryogenic valves selection and proof testing and diagnostics; the characteristics of steam trap; and the online testing, calculation method, measurement method and visual inspection.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on valve selection, installation, upgrading, inspection, maintenance, repair and troubleshooting
- Identify lubrication fitting and categorize valves based on their function
- Discuss valve symbols, hydraulic pneumatic valves, motor, cylinders and directional control valves
- Recognize solenoid valve, typical valve and other valve designs
- Identify the various types of pressure control valves, check valves and control valve
- Describe the characteristics of valve and apply control valve selection and sizing
- Discuss control valve performance, process considerations, actuators and positioners
- Explain the fundamentals of pressure relief devices including the advantages and disadvantages of conventional valve and balanced bellows valve
- Recognize the piston type pilot operated safety relief valve as well as determine wetted area, heat absorption, vaporization rate and relief vent area
- Discuss the causes of chatter and staggered PSV's and apply valve critical inspection, maintenance and testing
- Carryout PRV repair and non-destructive testing including disc dismantling, assembly and disassembly
- Apply lapping procedure, grinding and assembly as well as valve sealing, installation, maintenance, troubleshooting and galling
- Identify the common valve problems, potential causes and water hammer
- Employ valve testing and sealing, PRV adjustments, digital communications, cryogenic valves selection and proof testing and diagnostics
- Discuss the characteristics of steam trap and apply online testing, calculation method, measurement method and visual inspection

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

ME0100 - Page 2 of 11

ME0100-06-25|Rev.443|24 April 2025

Who Should Attend

This course provides an overview of all significant aspects and considerations of valve selection, installation, upgrading, inspection, maintenance, repair and troubleshooting for maintenance engineers, application engineers, inspection engineers, mechanical engineers, under-development engineers, electrical/electronics engineers, control systems and instrumentation engineers, production engineers, wellhead and drilling engineers and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

ME0100 - Page 3 of 11

ME0100-06-25|Rev.443|24 April 2025

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton is a **Senior Process Engineer** with over **30** years of industrial experience within the **Oil & Gas**, **Refinery**, **Petrochemical** and **Utilities** industries. His expertise lies extensively in the areas of **Process Troubleshooting**, **Distillation Towers**, **Fundamentals of Distillation** for Engineers, **Distillation** Operation and Troubleshooting, **Advanced Distillation** Troubleshooting, **Distillation** Technology, Vacuum **Distillation**, **Distillation Column** Operation & Control, **Oil Movement** Storage & Troubleshooting,

Process Equipment Design, Piping Systems, Applied Process Engineering Elements, Process Plant Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site Engineering Manager**, **Senior Project Manager**, **Process Engineering Manager**, **Project Engineering Manager**, **Construction Manager**, **Site Manager**, **Area Manager**, **Procurement Manager**, **Factory Manager**, **Technical Services Manager**, **Senior Project Engineer**, **Process Engineer**, **Project Engineer**, **Assistant Project Manager**, **Handover Coordinator** and **Engineering Coordinator** from various international companies such as the **Fluor Daniel**, **KBR** South Africa, **ESKOM**, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, **Worley Parsons**, Lurgi South Africa, **Sasol**, **Foster Wheeler**, **Bosch & Associates**, **BCG** Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a **Bachelor's degree** in **Industrial Chemistry** from **The City University** in **London**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

ME0100 - Page 4 of 11

Course Fee

Istanbul	US\$ 6,000 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Registration & Coffee
Welcome & Introduction
PRE-TEST
Lubrication Fitting Identification
Bearing Lubrication Fitting • Packing Injection Fitting • Drain Port/Cavity
Lube Port • Seal Sealant Injection Port
Valves can be Broadly Categorized Based on their Function as:
Stop (Isolation) Valves • Regulating Valves • Back-Flow Prevention Valves •
Pressure-Relief Valves
Break
Working Fluid
Liquid • Gas • Solids
Manual Valves
Classification of Value on their Operating Way • Value Symbols • Rotating
Valves • Plug Valves • Ball Valves • Butterfly Valves • Glove Valves • Gate
Valves • Diaphragm Valve Components • Diaphragm Valve Action • Flexible
Valves • Pinch Valves • Solenoid Valve • Foot Valve • Vave Characterization

ME0100 - Page 5 of 11

1100 – 1130	<i>Hydraulic Pneumatic Valves</i> <i>Fixed Displacement Hydraulic Pump</i> • <i>Variable Displacement Hydraulic Pump</i>
1130 – 1200	<i>Motors</i> <i>Pneumatic Motor</i> • <i>Rotary Actuator</i>
1200 - 1230	<i>Cylinders</i> Single Acting Cylinder • Double Acting Cylinders
1230 – 1245	Break
1245 - 1330	<i>Cylinders with Cushions</i> Single Fixed Cushion • Double Fixed Cushion • Single Adjustable Cushion • Double Adjustable Cushion
1330 - 1420	Directional Control Valves Electro-Hydraulic Servo Valve • Manual Control • Electrical Control • Flow Control Valve
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Dav 2

What is a Coil & How Does it Work?
How Does a Solenoid Valve Work • Style • Type • Design • Operators •
Actuator Control
Typical Valve
Poppet Valves • Spool Valves • Spool Types • Disc Seals
Break
Other Valve Designs
Pressure Switches • Logic "or"/"and" Shuttle Valve • Flow Regulator •
Banjo Flow Regulator • Quick Exhaust Valve • Solenoid Valves • Principle of
<i>Operation</i> • <i>What Causes Solenoids to Fail</i>
Pressure Control Valves
Types of Pressure Control Valves • Pressure Relief Valve (PRV) • Complete
Circuit • Direct Relief Valve Performance • Pilot Operated Relief Valve •
Unloading Valve • Sequence Valve Pressure-Reducing Valve •
Counterbalance Valve • Safety Valve • How Failures Occur in Hydraulics
Systems • Root Cause of Hydraulic Failures • Known Best Maintenance
Practices ''Hydraulics''
Check Valves
<i>Operational Detail</i> • <i>The Main Types of Check Valves</i> • <i>Selection Criteria</i>
Control Valve Types
Rotary Valves • Butterfly Valves • Eccentric Disk Valves • Bidirectional
Tightness • Eccentric Rotary Plug Valves • Ball Valves • Plug Valves •
Linear Valves • Globe Valves • Cage Valves
Control Valve Theory
Definition of a Control Valve • Types of Energy • What Happens Inside a
Control Valve Choked Flow Cavitation Flashing
Break
Characteristics & Trim
Value Characteristics • Application Examples • Cavitation Control •
Anti – Cavitation Trim • High Pressure Drop Applications • Low Noise
Trim • Diffuser

ME0100 - Page 6 of 11

1315 - 1345	Control Valve SelectionDecision Criteria •Materials of Construction •Valve Characteristics •Actuator Considerations •Price Comparison •Selection Guidelines •Application Comparisons •Computer Sizing Programme
1345 – 1420	Control Valve SizingGeneral • Valve Coefficient (CV) • ISA Sizing Equation • SimplifiedSizing Equation • Comparison of Valve Types • Turndown versusRangeability
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Dav 3

Duyo	
0730 - 0830	Installed Gain as a Control Valve Sizing CriteriaControl Valve Characteristics • Inherent Characteristic • InstalledCharacteristic & Gain • Selecting the Right Pump
0830 - 0900	Control Valve Performance Process Variability • Dead Time • Actuator / Positioner Design • Valve Response Time • Valve Type & Characterisation • Valve Sizing
0900 – 0930	Process Considerations End Connections • Face to Face Criteria • Materials Selection • Modes of Failure • Leakage Rates • International Standards
0930 - 0945	Break
0945 - 1030	<i>Actuators & Positioners</i> <i>Types of Actuators</i> • <i>Linear Actuators</i> • <i>Rotary Actuators</i> • <i>Actuator Forces</i> • <i>Positioners</i> • <i>Fail Safe Systems</i>
1030 – 1100	<i>Accessories</i> <i>Auxiliary Handwheels</i> • <i>Pressure Regulators</i> • <i>Lock-Up Valves</i> • <i>ON-OFF</i> <i>Valve</i> • <i>Position Transmitters</i> • <i>Volume Booster</i> • <i>Limit Switches</i> • <i>Solenoid</i> <i>Valves</i>
1100 – 1130	Fundamentals of Pressure Relief Devices What is the Hazard? • What are Relief Events? • Potential Lines of Defense • What is a Relief System? • Why Use a Relief System? • Pressure Relief Devices • Pressure Terminology • Superimposed Back Pressure • Built-Up Back Pressure • Code Requirements • Relief Design Methodology • Locating Reliefs - Where? • Choosing Relief Types • General Types of Safety Relief Valve Design • Conventional Spring-Loaded Safety Relief Valve • Advantages/Disadvantages Conventional Valve • Balanced Bellows Spring Loaded Safety Relief Valve • Advantages/Disadvantages Balanced Bellows Valve
1130 – 1215	Piston Type Pilot Operated Safety Relief Valve Below Set Pressure: Normal Operation • At Set Pressure: Actuating State • Main Valve Opening • At Closing Pressure: Refilling the Dome • Pop Action Pilot Valve • Modulate Action Pilot Valve • Advantages/Disadvantages • Back Pressure Effects • Backflow Preventer (Standard) • Pilot Supply Filter R30 • Manual Blowdown • Remote Sensing • Relief Event Scenarios • Sizing Reliefs • Scenarios Drive Relief Rates • Overfill Scenario Calcs • Fire Scenario Calcs • Determine Wetted Area, Heat Absorption, Vaporization Rate & Relief Vent Area

ME0100 - Page 7 of 11

1215 – 1230	Break
1230 - 1330	<i>Chatter</i> <i>Principal Causes</i> • <i>Causes of Chatter</i> • <i>Chatter Mechanism</i> • <i>Chatter Solutions</i> • <i>Chatter Non-Piping Solutions</i> • <i>Chatter Problem</i>
1330 – 1420	Staggered PSV's Inlet/Outlet Line Considerations • Rupture Discs • Comparison of Rupture Disc Types • Composite Rupture Disc • Rupture Pins • Conventional Rupture Pin Device • Comparison of Rupture Pins to Rupture Discs • Potential Uses for Rupture Pins
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

Day 4	
0730 – 0830	Valve Critical Inspections Valve Maintenance • What is Preventative Maintenance? • When to Use Preventative Maintenance & Predictive Maintenance • Objectives of an Inspection Job • PRV Repair Flow Chart • Inspector's Role • Measurement & Test Equipment • Inspection Methods • PRV Spindle Inspection Points • Disk & Nozzle Inspection • PRV Guide & Disc Holder • PRV Spring Inspection Points • Spring Rate • 900 Series Disc Criteria Data Sheet • 6000 Series • Sample Traveler • Critical Inspection
0830 - 930	PRV Repair & Non-Destructive Examination Pressure Relief Valve Repair • Critical Parts • Nozzle & Disc • Spring Adjusting Ring • Parts Providing Alignment • Lifting Devices • Safety Valve to Repair
0930 - 0945	Break
0945 – 1030	Check Tools Designated Use • V-Block • Dismantling Instructions for Type 526 API • Disc Disassembly with Sealing Plate • Removing the Studs from the Body • Execution • Measures & Facing Profile • Surface Quality • Nondestructive Examination • Preparation for Valve Assembly • Assembly of Type 526 • Assembly of Disc Assembly • Assembly of the Adjusting Screw • Adjusting the Set Pressure • Body and Bonnet Connection
1030 – 1130	Lapping, Grinding & AssemblySurface QualityLapping ObjectivesTwo Critical Elements of PRVOperationPurpose of LappingBalance of LappingRing LapsLapping MaterialsCleanlinessLap SelectionNozzle Seat WidthPRV Lapping ProcedureGlass PlateTechnical RequirementsTechnical IllustrationMonocrystalline Diamond PowderDesignated UseTechnical RequirementsTechnical IllustrationRe-Lapping with aGlass PlateRe-Lapping the Nozzle and the DiscPRV Bearing PointsAssembly ObjectivesAssemblers ResponsibilityAssembly OperationSample TravelerSample TravelerSample Traveler

ME0100 - Page 8 of 11

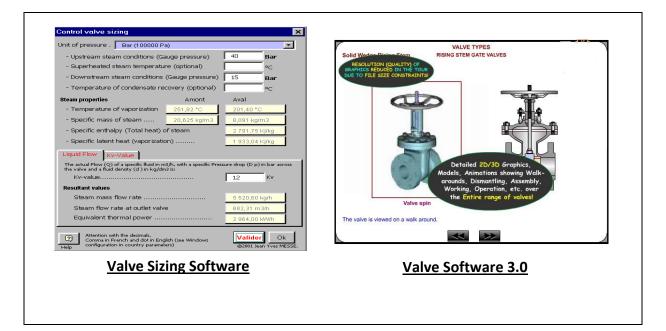
	Valve Sealing Solutions
	National Emission Standards for Equipment Leaks • Valve Sealing Solutions
	Non- Asbestos Valve Sealing System Electric Power Research Institute
1130 – 1200	(EPRI) • Causes of Valve Leakage • Volume Loss • Valve Design •
1150 - 1200	Packing Material • Pressure & Temperature • Temperature Cycling •
	Valve Actuation • Horizontally Mounted Valves • Valve Condition •
	Pitting • Maintenance Practices • Gland Packing • Second Service
	Category • Liveload • Balancing Control and Low Emissions
1000 1000	Operational Issues
1200 – 1230	General Review \bullet Installation \bullet Maintenance \bullet Troubleshooting \bullet Corrosion \bullet
1000 1045	Galling
1230 - 1245	Break
1015 1015	Common Valve Problems
1245 – 1315	Water Hammer Effects • High Noise Levels • Noise Attenuation • Fugitive Emissions
	Control Valve Failures Potential Causes
1315 - 1345	Physical Failures • Velocity Problems • Erosion by Cavitation • Erosion by
1515 - 1545	Abrasion \bullet Noise \bullet Vibration
	Water Hammer
	Where Water Hammer Occurs • Conditions Causing Water Hammer •
1015 1100	Hydraulic Shock • Thermal Shock • Differential Shock • Unsteady Flow in
1345 – 1420	Pipes • Water Hammer Phenomenon in Pipelines • Some Typical Damages •
	Propagation of Water Hammer Pressure Wave • Analysis of Water Hammer
	Phenomenon
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

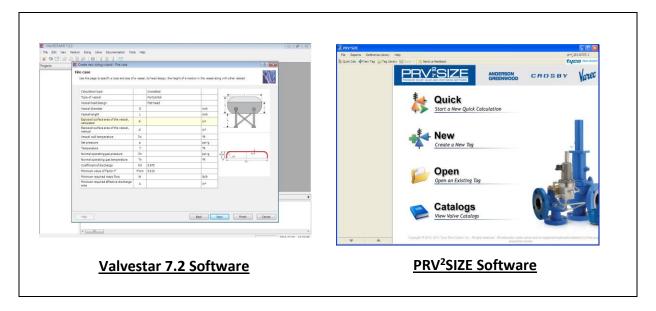
Day 5

Buy 0	
0730 – 0830	Valve Testing & SealingTesting ObjectivesASME RequirementsPRV Testing & Adjustments• Testing & SealingDefinition of Set PressureLiquid Test – Definitionof Open• PRV Set Pressure on LiquidAbove Opening Pressure• Maximum Overpressure 110% of Set Pressure• Air Test PRV• ReactionForce• ASME Code Requirement for PRV Seat Tightness Testing• API 527• PRV Adjustments• Two Ring/One Ring Design Ring Setting Chart•Sealing Adjustments• Sample Traveler• Field Testing Advice• AuxiliaryLifting DevicesOn Site Safety Valves Testing Schedule• Safety Valves Test Schedule for
0830 - 0930	<i>Field Communications</i> <i>Analogue Signals</i> • <i>Digital Communications</i> • <i>Fieldbus Technologies</i>
0930 - 0945	Break
0945 – 1015	Cryogenic Valves Selection of Cryogenic Valves • Material Considerations • Standards & Testing

ME0100 - Page 9 of 11

	Fire Safe Valves
1015 - 1045	Requirements • Sealing & Leakage • Design • Standards & Testing •
	Examples
1045 - 1115	Strainers
	Y-Type Strainers • Basket Type Strainers • Strainer Screens
	Proof Testing & Diagnostics
1115 - 1145	Safety Instrumented Systems (An Overview) • Proof Testing • Partial Valve
	Stroking • Diagnostics
	Steam Traps
	Characteristics of Steam • Steam Trap • Typical Steam Generation-
	Distribution-Recovery Diagram Mechanical Steam Traps
	Steam Traps • Float & Thermostatic Steam Traps • Thermostatic Steam
1145 – 1230	Traps • Bimetallic Steam Traps • Bellows Steam Traps • Thermodynamic
	Steam Traps • Disc Type Steam Traps • Orifice Type Steam Traps • Steam
	Trap Surveys: Methods-Frequency • Methods of Detection • Recommended
	Steam Trap Survey Frequency • Rules of Thumb When Conducting Steam
	Trap Projects
1230 - 1245	Break
	Online Testing
	Pressures' Scales
	<i>Calculation's Example</i> • <i>Graph's Example</i> • <i>Graph Analysis</i> • <i>Fully Explosion</i>
1245 – 1315	<i>Proof Equipment</i> • <i>Equipment Used</i> • <i>Visual Inspection</i> • <i>Test Report</i> • <i>Some</i>
	Fluids with which We Worked • Online Safety Valve Testing • Approved
	Technology • Certified Contractor • Advantages of the on-Line Safety Valve
	<i>Testing</i> • <i>Correct Sizing of the Outline Line</i>
	Valves for Control of Steam Flow Rate
	What Do the Valves Do? • No Load Vs Full Load • Mounting of Valves •
	<i>Why are So Many Valves Used?</i> • <i>The Full Load Conditions</i> • <i>Three Important</i>
1315 – 1345	Parameters • Pressure Ratio • Steam Path • Main Steam System • Full
	Load Conditions: A Case Study • Variation of Initial Pressure, Main Steam
	Temperature, Reheat Steam Temperature & Condenser Vacuum • The Loss
	with the Exit Velocity Condenser Pressure Ratio
1015 1100	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
1400 1415	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course


ME0100 - Page 10 of 11



Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Valve Sizing Software", "Valve Software 3.0", "Valvestar 7.2 Software" and "PRV2SIZE Software".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

ME0100 - Page 11 of 11

