

COURSE OVERVIEW TE0298 CIO₂ Disinfection Systems

O CEUS 30 PDHs)

<u>Course Title</u> CIO₂ Disinfection Systems

Course Date/Venue

- Session 1: May 26-30, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
- Session 2: September 29-October 03, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

TE0298

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Chlorine Dioxide (CIO₂) Disinfection Systems. It covers the water disinfection technologies. chlorine dioxide (CIO_2) basics and mechanism of disinfection by CIO₂; the stability under various pH and temperature conditions, reactions with organic and inorganic substances, formation and control of by-products and influence of water quality on reactivity; the acceptable limits in drinking water, health effects of CIO₂ and byproducts, environmental impact of discharge and ecotoxicology and aquatic risk; the CIO₂ generation methods, CIO₂ generation equipment and technologies and storage and delivery considerations; the typical schematic of CIO₂ disinfection system, placement of sensors and injection points and design considerations; and the flow integration into water systems.

Further, the course will also the sizing and dosing calculations, material selection and compatibility and online monitoring and measurement; the PLC-based dosing control, feedback and feed-forward loops, alarm systems and interlocks and integration into plant DCS/SCADA; the process optimization techniques, residual management and compliance, alarm management and safety interlocks; the proper maintenance and calibration procedures and daily operation procedures; the low ClO₂ yield or dosing errors, sensor drift and calibration issues, pipeline scaling and corrosion; and the alarms and system malfunctions.

TE0298 - Page 1 of 9

During this interactive course, participants will learn the root cause analysis of failures, process deviation and correction and maintenance logs and failure trends; the CIO_2 gas leak handling, chemical spill containment, system isolation protocols, emergency PPE and response kits; the operator safety and PPE requirements, training and competency development and integration with desalination and RO systems; the power plant water systems covering cooling tower disinfection, boiler feedwater applications, legionella control strategies and CIO_2 compatibility with power equipment; auditing and inspecting CIO_2 systems; and the regulations and documentation including advanced topics in CIO_2 disinfection.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on CIO₂ disinfection systems
- Discuss water disinfection technologies, chlorine dioxide (CIO₂) basics and mechanism of disinfection by CIO₂
- Recognize stability under various pH and temperature conditions, reactions with organic and inorganic substances, formation and control of by-products and influence of water quality on reactivity
- Identify acceptable limits in drinking water, health effects of CIO₂ and byproducts, environmental impact of discharge and ecotoxicology and aquatic risk
- Carryout CIO₂ generation methods, CIO₂ generation equipment and technologies and storage and delivery considerations
- Describe typical schematic of CIO₂ disinfection system, placement of sensors and injection points, design considerations and flow integration into water systems
- Apply sizing and dosing calculations, material selection and compatibility and online monitoring and measurement
- Discuss PLC-based dosing control, feedback and feed-forward loops, alarm systems and interlocks and integration into plant DCS/SCADA
- Employ process optimization techniques, residual management and compliance and alarm management and safety interlocks
- Implement proper maintenance and calibration procedures and daily operation procedures as well as discuss low CIO₂ yield or dosing errors, sensor drift and calibration issues, pipeline scaling and corrosion and alarms and system malfunctions
- Apply root cause analysis of failures, process deviation and correction and maintenance logs and failure trends
- Carryout CIO₂ gas leak handling and discuss chemical spill containment, system isolation protocols, emergency PPE and response kits
- Recognize operator safety and PPE requirements and apply training and competency development and integration with desalination and RO systems
- Identify Power plant water systems covering cooling tower disinfection, boiler feedwater applications, legionella control strategies and CIO₂ compatibility with power equipment
- Audit and inspect CIO₂ systems and discuss regulations and documentation including advanced topics in CIO₂ disinfection

TE0298 - Page 2 of 9

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of CIO₂ disinfection systems for water treatment plant operators, environmental engineers and technicians, health, safety and environmental (HSE) professionals, maintenance and utility engineers, facility managers, chemical engineers and technicians, public health officials and inspectors, industrial hygienists, project managers and supervisors and other technical staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

TE0298 - Page 3 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

•

BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED

<u>The International Accreditors for Continuing Education and Training</u> (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

TE0298 - Page 4 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is a Senior Water Engineer with over 45 years of practical experience within the Oil, Gas, Refinery, Petrochemical, Utilities and related industries. His expertise widely includes in the areas of Water Distribution System, Water Reservoir, Water Tanks, Water Pumping Station, Water Network System, Water Pipes & Fittings, Water Hydraulic Modelling, Water Network Hydraulic Simulation Modelling, Water

Balance Modelling, Water Distribution Network, Water Network System Design, Water Network System Analysis, Water Forecasts Demand, Water Network System Extension, Water Network System Replacement & Upgrade, Water Networks Optimization, Water Distribution Systems & Pumping Stations, Reservoirs & Pumping Stations Design & Operation, Water Reservoirs & Pumping Stations, Water Storage Reservoir, Pumping Systems, Interconnecting Pipelines, Pump Houses & Booster Pumping Stations, Water Pipelines Materials & Fittings, Waste Water Effluent Treating Facilities, Sewage & Industrial Waste Water Treatment & Environmental Protection Best Practices, Oily Water Treatment Technology, Water Equipment Selection & Inspection, Effluent Treatment & Slurry Handling, Water **Testing & Commissioning** Techniques, Wastewater Treatment, Water Supply Design, Potable Water Transmission, Districts Meters Areas (DMAs), Water Supply & Desalination Plants Rehabilitation, Water Supply & Distribution Systems Efficiency & Effectiveness, Water Treatment Technology, Reverse Osmosis, MSF Plants, Industrial Water Treatment in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the Water Engineer, Project Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer, Design Engineer, Mechanical Engineer, Maintenance Engineer and Senior Instructor/Lecturer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Sub-contractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a **Registered Professional Engineer** in the **USA** and **Greece** and has a **Master's** and **Bachelor's** degree in **Mechanical Engineering** with **Honours** from the **Purdue University** and **SIU** in **USA** respectively as well as an **MBA** from the **University of Phoenix** in **USA**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** and delivered numerous courses, trainings, conferences, seminars and workshops internationally.

TE0298 - Page 5 of 9

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to Water Disinfection Technologies</i> <i>Overview of Common Disinfection Methods (Cl₂, UV, Ozone, ClO₂)</i> • <i>Comparison of Disinfection Efficacy and Byproducts</i> • <i>Advantages and</i> <i>Limitations of Each Method</i> • <i>Selection Criteria for Water Utilities</i>
0930 - 0945	Break
0945 - 1030	<i>Chlorine Dioxide (ClO₂) Basics</i> <i>Molecular Structure and Physical Properties</i> • <i>Oxidizing Power and Reaction</i> <i>Pathways</i> • <i>Differences Between Cl₂ and ClO₂</i> • <i>Applications in Potable and</i> <i>Industrial Water Systems</i>
1030 – 1130	<i>Mechanism of Disinfection by ClO₂</i> <i>Microbial Inactivation Principles</i> • <i>Effectiveness Against Bacteria, Viruses,</i> <i>Protozoa</i> • <i>Impact on Biofilm and Biofouling</i> • <i>Kinetics of ClO₂ Disinfection</i>
1130 – 1215	<i>ClO₂ Stability & Reactivity</i> Stability Under Various pH and Temperature Conditions • Reactions with Organic and Inorganic Substances • Formation and Control of by-Products (Chlorite, Chlorate) • Influence of Water Quality on Reactivity
1215 - 1230	Break
1230 - 1330	Health & Environmental Considerations Acceptable Limits in Drinking Water (WHO, EPA, EU) • Health Effects of ClO ₂ and Byproducts • Environmental Impact of Discharge • Ecotoxicology and Aquatic Risk
1330 - 1420	<i>Case Studies: Global Use of ClO₂</i> <i>Municipal Water Treatment Plants</i> • <i>Industrial Cooling Systems</i> • <i>Power</i> <i>Plant Applications</i> • <i>Desalination Pre-Treatment</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830	<i>ClO₂ Generation Methods</i> Sodium Chlorite-Based Generation • On-Site versus Off-Site Generation • 2- Chemical vs. 3-Chemical Generation • Reaction Efficiency and Yield Control
0830 – 0930	<i>ClO₂ Generation Equipment & Technologies</i> Batch versus Continuous Systems • Reactors, Storage Tanks, Dosing Pumps • Instrumentation and Control Components • Manufacturer Comparisons (Grundfos, Evoqua, etc.)
0930 - 0945	Break
0945 - 1100	Storage & Delivery Considerations ClO ₂ Storage Limitations • Handling Sodium Chlorite Safely • Delivery Piping and Compatibility • Avoiding Losses and Ensuring Stability

TE0298 - Page 6 of 9

1100 – 1215	<i>System Layout & P&ID Review</i> <i>Typical Schematic of ClO₂ Disinfection System</i> • <i>Placement of Sensors and</i> <i>Injection Points</i> • <i>Design Considerations for EWEC Plants</i> • <i>Flow Integration</i> <i>into Water Systems</i>
1215 - 1230	Break
1230 - 1330	<i>Sizing & Dosing Calculations</i> Determining Demand and Required ClO ₂ Dose • Flow-Based Dosing vs. Residual Control • Contact Time and CT Values • Real-Time Dosing Control Systems
1330 - 1420	<i>Material Selection & Compatibility</i> <i>Corrosion Resistance of Piping and Tanks</i> • <i>Selection of Valves, Sensors and</i> <i>Seals</i> • <i>Polymer versus Metallic Options</i> • <i>Compatibility Charts and Guidelines</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & Day Two

Dav 3

Day 3	
0730 - 0830	Online Monitoring & Measurement
	ClO ₂ Analyzers and Sensors • ORP and Residual Monitoring • Calibration
	Procedures • Real-Time versus Batch Sample Analysis
	Automation & SCADA Integration
0830 - 0930	PLC-Based Dosing Control • Feedback and Feed-Forward Loops • Alarm
	Systems and Interlocks • Integration into Plant DCS/SCADA
0930 - 0945	Break
	Process Optimization Techniques
0945 - 1100	Minimizing Chemical Usage • Optimizing Contact Time • Reducing
	Byproduct Formation • Balancing Disinfection with Cost
	Residual Management & Compliance
1100 – 1215	Monitoring Residual Levels Post-Treatment • Meeting Regulatory Thresholds
1100 - 1215	• Strategies for Controlling Chlorite and Chlorate • Use of Activated Carbon
	and Other Treatments
1215 – 1230	Break
	Alarm Management & Safety Interlocks
1230 – 1330	High/Low Level Alarms • Emergency Shutdown Procedures • Remote
	Monitoring and Diagnostics • Interlock Logic for Safe Operation
	Maintenance & Calibration Procedures
1330 – 1420	Routine Sensor Calibration • Generator and Pump Servicing •
	Troubleshooting Instrumentation • Spare Parts Management
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Dav 4

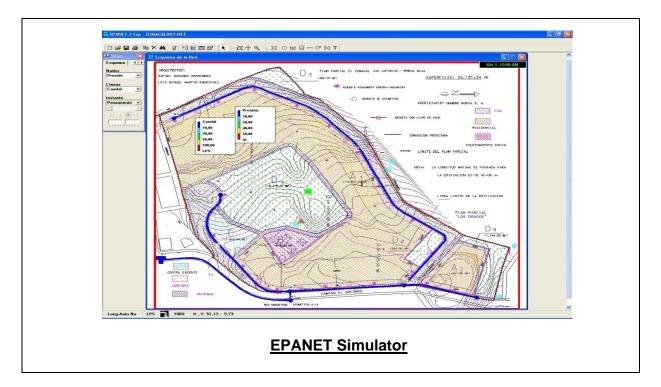
Day 4	Daily Operation Procedures
0730 - 0830	
	Startup and Shutdown Sequences • Safety Checks and Logbooks • Routine
	Visual Inspections • Operator Responsibilities
0830 - 0930	Common Operational Challenges
	Low ClO ₂ Yield or Dosing Errors • Sensor Drift and Calibration Issues •
	Pipeline Scaling and Corrosion • Alarms and System Malfunctions

TE0298 - Page 7 of 9

0930 - 0945	Break
0945 - 1100	Troubleshooting Methodology Root Cause Analysis of Failures • Process Deviation and Correction • Case
	Study Exercises • Maintenance Logs and Failure Trends
	Emergency Procedures & Risk Scenarios
1100 – 1215	ClO ₂ Gas Leak Handling • Chemical Spill Containment • System Isolation
	Protocols • Emergency PPE and Response Kits
1215 - 1230	Break
	Operator Safety & PPE Requirements
1230 - 1330	Exposure Risks of ClO ₂ and Sodium Chlorite • PPE: Gloves, Goggles,
1200 1000	Respirators • Ventilation and Confined Space Protocols • First Aid and MSDS
	Review
1330 - 1420	
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Discussed Tomorrow
1430	Lunch & End of Day Four
	Training & Competency DevelopmentSOP and Work Instruction Development • Competency Matrices for Operato• Refresher and Certification Programs • Use of Simulation and Hands- PracticeRecapUsing this Course Overview, the Instructor(s) will Brief Participants about t Topics that were Discussed Today and Advise Them of the Topics to Discussed Tomorrow

Day 5

Integration with Desalination & RO Systems
ClO ₂ Use as Pre-Treatment in SWRO • Fouling Control and Biofilm
Prevention • Compatibility with Membranes • Case Study: EWEC
Desalination Plants
Power Plant Water Systems
Cooling Tower Disinfection • Boiler Feedwater Applications • Legionella
<i>Control Strategies</i> • <i>ClO</i> ² <i>Compatibility with Power Equipment</i>
Break
Auditing & Inspection of ClO ₂ Systems
Checklists for Regulatory Compliance • Mechanical and Process Inspection •
Performance Evaluation • Audit Reporting and Documentation
Regulations & Documentation
UAE, WHO, EPA and EU Standards • Record-Keeping and Traceability •
Permitting and Chemical Inventory • Emergency Response Plans
Break
Advanced Topics in ClO ₂ Disinfection
Advanced Oxidation Processes (AOPs) • ClO ₂ in Wastewater Treatment •
<i>Emerging Technologies and Sensors</i> • <i>Green Alternatives and Future Trends</i>
Course Conclusion
Using this Course Overview, the Instructor(s) will Brief Participants about a
Topics that were Covered During the Course
POST-TEST
Presentation of Course Certificates
Lunch & End of Course


TE0298 - Page 8 of 9

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the latest revision of "EPANET" simulators.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

TE0298 - Page 9 of 9

