

COURSE OVERVIEW ME1151 Failure Analysis of Pump Mechanical Seals

CEUS

30 PDHs)

Course Title

Failure Analysis of Pump Mechanical Seals

Course Reference

ME1151

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	June 22-26, 2025	Safir Meeting Room, Divan Istanbul, Turkey
2	August 25-29, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
3	October 26-30, 2025	Crowne Meeting Room, Crowne Plaza Al Khobar, KSA
4	December 14-18, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai UAE

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Failure Analysis of Pump Mechanical Seals. It covers the importance of seals in pump operation and the types of mechanical seals; the components of pump mechanical seals, basic pump seal failure mechanisms and seal selection criteria; the pump seal standards and codes, seal installation and alignment and handling seal components to damage: and the avoid causes and consequences dry running, preventive of measures and monitoring techniques.

Further, the course will also discuss the excessive temperature, seal face wear. contamination and chemical attack; the impact of vibration on mechanical seals, effects of pump misalignment on seal integrity the and importance of proper shaft and bearing alignment; the improper seal face pressure and visual inspection techniques; and documentation of failure symptoms and the use of magnification tools for close inspection.

ME1151 - Page 1 of 9

During this interactive course, participants will learn the microscopic and surface analysis, chemical and material testing, thermal imaging for heat detection and performance data analysis; the failure mode and effect analysis (FMEA), seal maintenance best practices, seal repair procedures and seal replacement guidelines; upgrading pump seal technology and cost analysis of seal failures; the seal failure prevention program and the future trends in pump mechanical seals; and the role of AI and automation in seal monitoring.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an in-depth knowledge on failure analysis of pump mechanical seals
- Discuss the importance of seals in pump operation and the types of mechanical seals
- Identify the components of pump mechanical seals, basic pump seal failure mechanisms and seal selection criteria
- Employ pump seal standards and codes and apply seal installation and alignment and handling seal components to avoid damage
- Recognize the causes and consequences of dry running and apply preventive measures and monitoring techniques
- Determine excessive temperature, seal face wear, contamination and chemical attack
- Discuss the impact of vibration on mechanical seals, effects of pump misalignment on seal integrity and the importance of proper shaft and bearing alignment
- Identify improper seal face pressure and apply visual inspection techniques, documentation of failure symptoms and the use of magnification tools for close inspection
- Carryout microscopic and surface analysis, chemical and material testing, thermal imaging for heat detection and performance data analysis
- Employ failure mode and effect analysis (FMEA), seal maintenance best practices, seal repair procedures and seal replacement guidelines
- Upgrade pump seal technology, apply cost analysis of seal failures and create a seal failure prevention program
- Discuss the future trends in pump mechanical seals and the role of AI and automation in seal monitoring

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of failure analysis of pump mechanical seals for mechanical engineers, maintenance and reliability engineers, rotating equipment engineers, plant engineers and technicians, operations and production personnel, failure analysis specialists, condition monitoring and vibration analysts, seal and pump vendors or OEM representatives, asset integrity and reliability managers.

ME1151 - Page 2 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's Certificates are accredited by the following international accreditation organizations:

• **BAC**

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

ME1151 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Tony Dimitry, PhD, MSc, BSc, is a Senior Mechanical Engineer with over 30 years of industrial experience. His expertise covers Pumps, Compressors, Turbines & Troubleshooting, Centrifugal Pumps, Maintenance of Gas Compressors, Compressor & Steam Turbine, Pressure Safety Relief Valve Repair & Recalibration, PSV/PRV Troubleshooting, PRV Testing & Repair, Valve Testing &

Inspection, Valve Sealing, Valve Calibration, Process Equipment, Vibration Siemens Analysis. Heat Exchanger. Steam Turbine Maintenance. Electromechanical Maintenance, Machinery Alignment, Lubrication Technology, Compressors, HVAC & Refrigeration Systems, Piping System, Blower & Fan, Shaft Repair, Control Valve & Actuator, Safety Relief Valves, Pipelines, Piping Vibration Analysis, Pressure Vessels, Dry Gas Seal, Process Equipment, Diesel Engine & Crane Maintenance, Maintenance Management (Preventive, Predictive, Breakdown), Reliability Management, Condition-Based Monitoring, Rotating Equipment, Tanks & Tank Farms, Pneumatic System, Static Equipment, Failure Analysis, FMEA, Corrosion, Metallurgy, Planning, Scheduling, Cost Control, Preventive and Predictive Maintenance. Currently, he is the Maintenance Manager of the PPC Incorporation wherein he is responsible for the maintenance and upgrade of all plant components, monitoring the thermal stresses and the remaining life of steam pipes, turbine casing, mills, fans and pumps. He is in-charge of the metallurgical failure analysis and the usage of fracture mechanics for determining crack propagation in impellers of turbines, assessing all alterations and developments for upgrading the plant.

During his career life, Dr. Dimitry was a **Senior Engineer** in **Chloride Silent** (UK) wherein he was responsible for the mechanical, thermal and electrical modelling of battery problems for electric vehicles and satellites as well as an **Operations** Engineer of the National Nuclear Corporation (UK) wherein he was responsible for the optimization of the plant. Prior to this, he was a **Professor** at the **Technical** University of Crete and an Assistant Professor of the University of Manchester (UK).

Dr. Dimitry has PhD, Master and Bachelor degrees in Mechanical Engineering from the Victory University of Manchester and the University of Newcastle, UK respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an associate member of the American Society of Mechanical Engineers (ASME) and Institution of Mechanical Engineers (IMechE). He has further delivered various trainings, seminars, courses, workshops and conferences internationally.

ME1151 - Page 4 of 9

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

Istanbul	US\$ 6,000 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Abu Dhabi	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Al Khobar	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

D 4

Day	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Understanding Pump Seals Definition and Role of Mechanical Seals • Importance of Seals in Pump Operation • Types of Mechanical Seals (e.g., Single, Double, Cartridge) • Applications in Various Industries
0930 - 0945	Break

ME1151 - Page 5 of 9 ME1151-06-25/Rev.00|28 May 2025

	Components of Pump Mechanical Seals
0945 - 1030	Primary Sealing Elements (Faces, Springs) • Secondary Sealing Elements (O-
	Rings, Gaskets) • Seal Housing and Its Function • Auxiliary Components
	(Flush Systems, Pressure Relief Valves)
	Basic Pump Seal Failure Mechanisms
1030 - 1130	Wear and Abrasion • Corrosion and Chemical Degradation • Thermal
	Distortion • Improper Lubrication
	Seal Selection Criteria
1120 1215	Pump Operating Conditions (Pressure, Temperature) • Fluid Characteristics
1150 - 1215	(Viscosity, Corrosiveness) • Environmental Factors (Dust, Vibration) •
	Material Selection (Metallic, Ceramic, Carbon)
1215 – 1230	Break
	Pump Seal Standards & Codes
1230 1330	ANSI/ASME Seal Standards • API and ISO Standards for Mechanical Seals •
1230 - 1330	Industry-Specific Standards (e.g., FDA, GMP) • Importance of Compliance for
	Safety and Efficiency
	Seal Installation & Alignment
1220 1420	Best Practices for Proper Installation • Tools and Equipment for Seal
1550 - 1420	Alignment • Handling Seal Components to Avoid Damage • Impact of
	Improper Installation on Seal Performance
	Recap
1420 1430	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

<u></u>	
0730 - 0830	Dry Running & Lack of Lubrication Causes and Consequences of Dry Running • Role of the Seal's Lubricating Fluid • Preventive Measures and Monitoring Techniques • Seal Failure Due to Insufficient Lubrication
0830 - 0930	Excessive Temperature Thermal Expansion and Its Effect on Seals • Temperature Limits for Various Materials • Cooling Methods to Prevent Overheating • Effects of Hot and Cold Shock on Seals
0930 - 0945	Break
0945 - 1100	Seal Face Wear Causes of Face Wear (Abrasion, Thermal Stress) • Wear Rate and Its Impact on Seal Longevity • Detecting Early Signs of Wear • Preventive Measures to Reduce Wear
1100 – 1215	Contamination & Chemical Attack Types of Contaminants (Dust, Particles, Chemical Agents) • Effects of Chemical Attack on Seal Materials • Preventing Contamination (Cleaning Procedures, Filtration) • Seal Materials Resistant to Chemical Degradation
1215 – 1230	Break
1230 – 1330	Vibration & Misalignment Impact of Vibration on Mechanical Seals • Effects of Pump Misalignment on Seal Integrity • Identifying and Addressing Vibration Sources • Importance of Proper Shaft and Bearing Alignment

ME1151 - Page 6 of 9

1330 - 1420	Improper Seal Face Pressure
	Importance of Correct Face Pressure in Sealing Performance • Consequences of
	High or Low Face Pressure • Calculating Optimal Face Pressure • Adjusting
	Face Pressure During Operation
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

	Visual Inspection & Diagnosis	
0730 - 0830	Techniques for Visual Inspection of Seals • Common Failure Signs Visible	
	During Inspection • Documentation of Failure Symptoms • Use of	
	Magnification Tools for Close Inspection	
	Microscopic & Surface Analysis	
0020 0020	Using a Microscope to Examine Seal Faces • Analyzing Wear Patterns	
0830 - 0930	(Scratching, Pitting, Grooving) • Techniques for Measuring Surface	
	Roughness • Role of Scanning Electron Microscopy (SEM)	
0930 - 0945	Break	
	Chemical & Material Testing	
0045 1100	Identifying Chemical Degradation Through Material Testing • Techniques for	
0945 - 1100	Analyzing Seal Material Integrity • Conducting Hardness Tests to Assess Seal	
	Wear • Interpreting Results from Chemical Exposure Tests	
	Thermal Imaging for Heat Detection	
1100 1015	Using Thermal Cameras to Detect Overheating • Identifying Hot Spots on	
1100 - 1215	Seals • Correlating Heat Patterns with Seal Failure • Role of Thermal Imaging	
	in Predictive Maintenance	
1215 - 1230	Break	
	Performance Data Analysis	
1220 1220	Analyzing Pressure and Temperature Data • Trends in Seal Failure from	
1230 - 1330	Historical Data • Using Data Loggers to Track Seal Performance Over Time •	
	Calculating Seal Wear Rates and Predicting Failure	
	Failure Mode & Effect Analysis (FMEA)	
1220 1420	Applying FMEA to Mechanical Seal Design • Identifying Potential Failure	
1550 - 1420	Modes • Assessing the Severity and Likelihood of Failures • Implementing	
	Corrective Actions Based on FMEA Results	
	Recap	
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today and Advise Them of the Topics to be	
	Discussed Tomorrow	
1430	Lunch & End of Day Three	

Dav 4

0730 - 0830	Seal Maintenance Best Practices
	Routine Inspection and Maintenance Intervals • Importance of Regular
	Lubrication and Cleaning • Preventing Contamination and Wear •
	Establishing a Maintenance Schedule
0830 - 0930	Seal Repair Procedures
	Repairing Minor Seal Damage (Re-Lapping, Resurfacing) • When to Repair
	<i>Versus Replace Seals</i> • <i>Tools and Equipment for Seal Repair</i> • <i>Steps to Ensure</i>
	Repair Effectiveness
	ME1151 - Page 7 of 9
C S FOA	

0930 - 0945	Break
0945 – 1100	Seal Replacement Guidelines Criteria for Deciding When to Replace Seals • Steps for Proper Seal Replacement • Tools and Techniques for Easy Seal Replacement • Impact of Improper Seal Replacement on Pump Performance
1100 – 1215	Upgrading Pump Seal Technology Latest Advancements in Mechanical Seal Technology • Benefits of Using High- Performance Seals • Seal Upgrades for Extreme Operating Conditions • Comparing Traditional versus Modern Sealing Technologies
1215 - 1230	Break
1230 – 1330	Cost Analysis of Seal Failures Estimating the Cost of Seal Failure (Downtime, Maintenance, Energy) • Understanding the Long-Term Financial Impact of Seal Failures • Developing a Cost-Effective Seal Maintenance Strategy • ROI on Using High-Quality Seals
1330 – 1420	<i>Creating a Seal Failure Prevention Program</i> Developing a Proactive Seal Maintenance Program • Establishing Monitoring and Diagnostic Systems • Training Staff to Identify Early Failure Signs • Implementing a Continuous Improvement Process for Seal Reliability
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

<u>Day 5</u>

0730 - 0830	Case Study: Pump Seal Failure in a Chemical Plant	
	Overview of a Real-World Failure Case • Analyzing the Root Causes of the	
	Failure • Lessons Learned from the Case Study • Implementing Corrective	
	Measures in the Plant	
	Case Study: Seal Failure in an Offshore Oil Rig	
0830 0030	Specific Challenges Faced in Offshore Environments • Impact of	
0850 - 0950	Environmental Factors on Seal Performance • Solutions Implemented to	
	Prevent Recurrence • Comparing Offshore and Onshore Seal Failure Cases	
0930 - 0945	Break	
	Workshop: Hands-On Seal Failure Diagnosis	
0045 1100	Practical Session on Inspecting Mechanical Seals • Identifying Common	
0945 - 1100	Failure Modes in Seals • Group Discussion on Failure Analysis Techniques •	
	Sharing Personal Experiences from Industry	
1100 – 1215	Group Discussion: Seal Failures in Various Industries	
	How Seal Failures Differ in Diverse Industries (Oil, Chemical, Food	
	Processing) • Comparing Pump Seal Performance in Critical Applications •	
	Strategies for Minimizing Seal Failures in Various Sectors • Best Practices for	
	Enhancing Seal Reliability Across Industries	

ME1151 - Page 8 of 9

1215 – 1230	Break
1230 - 1345	Future Trends in Pump Mechanical Seals
	Innovations in Seal Materials and Designs • The Role of AI and Automation in
	Seal Monitoring • How Industry 4.0 Is Influencing Seal Technologies •
	Predictive Analytics for Seal Life Expectancy
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about t
	Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical session will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Mechanical Seals CBT" and "Centrifugal Pumps and Troubleshooting Guide 3.0".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

ME1151 - Page 9 of 9

