

COURSE OVERVIEW FE0570

API 579-1/ASME FFS-1: Fitness-for-Service (FFS) of Process Plant Equipment, Pressure Vessels, Piping & Storage Facilities

Course Title

API 579-1/ASME FFS-1: Fitness-for-Service (FFS) of Process Plant Equipment, Pressure Vessels, Piping & Storage Facilities

Course Date/Venue

Session 1: February 09-13, 2025/Al Khobar Meeting Room, Hilton Garden Inn, Al Khobar, KSA

Session 2: September 14-18, 2025/Al Khobar Meeting Room, Hilton Garden Inn, Al Khobar, KSA

(30 PDHs)

Course Reference

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-theart simulators.

This course is designed to provide participants with a detailed and up-to-date overview of fitness-for-service (FFS) of process plant equipment, pressure vessels, piping and storage facilities in accordance with API 579-1/ASME FFS-1. It covers the API 579 and ASME FFS-1 standards; the fitness-for-service assessment procedure; the concept of remaining strength factor (RSF); the FFS and degradation mechanisms; the brittle fracture, pitting corrosion, blisters, HIC, SOHIC, distortion, crack-like flaws, creep, dent and gouges, laminations, wall thinning, cracking, embrittlement and mechanical damage; the FFS procedures and level of assessment; and the ASME FFS-1/API-579 procedure, API/ASME FFS levels of assessment, general FFS assessment procedure and failure prevention.

Further, the course will also discuss the piping codes B31, boiler and pressure vessel code sections, storage tanks, other codes and standards, post-construction codes and design margin piping systems; the FFS pipeline, piping, PV and tank; the systematic assessment of existing equipment for brittle fracture; and the brittle fracture features, brittle fracture and material behavior, brittle fracture risk factors and safeguards against brittle fracture.

FE0570 - Page 1 of 14

During this interactive course, participants will learn the measurement of toughness visually; the critical exposure temperature, applicability and limitations of the procedure and data requirements; the assessment techniques and acceptance criteria; the remaining life assessment acceptability for continued service; the assessment of general metal loss and its applicability, limitations and inspection data/thickness measurements; the UT measurements, burst prevention, NDE data mapping and visual examination; the assessment of local thin area; the thickness readings, stress analysis and piping assessment; the proper assessment of pitting corrosion, laminations, weld misalignment, shell distortion, dents, gouges, crack-like flaws, creep and fire damage; the fitness for service assessment for a drilling platform structure and piping following fire damage; the assessment of hydrogen blisters and hydrogen damage as well as fatigue and API 574 piping inspection; and the risk-based inspection, inspection planning and equipment screening.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on fitness-for-service (FFS) of process plant equipment, pressure vessels, piping and storage facilities in accordance with the latest API 579-1/ASME FFS-1 standard
- Discuss API 579-1 and ASME FFS-1 standards
- Carryout fitness-for-service assessment procedure and explain the concept of remaining strength factor (RSF)
- Determine FFS and degradation mechanisms, brittle fracture, pitting corrosion, blisters, HIC, SOHIC, distortion, crack-like flaws, creep, dent and gouges, laminations, wall thinning, cracking, embrittlement and mechanical damage
- Employ FFS procedures and level of assessment covering ASME FFS-1/API-579 procedure, API/ASME FFS levels of assessment, general FFS assessment procedure and failure prevention
- Review piping codes B31, boiler and pressure vessel code sections, storage tanks, other codes and standards, post-construction codes and design margin piping systems
- Discuss FFS of pipeline, piping, PV and tank
- Apply systematic assessment of existing equipment for brittle fracture
- Identify brittle fracture features, brittle fracture and material behavior, brittle fracture risk factors and safeguards against brittle fracture
- Measure toughness visually and discuss critical exposure temperature, applicability and limitations of the procedure and data requirements
- Carryout assessment techniques and acceptance criteria as well as remaining life assessment acceptability for continued service
- Assess general metal loss and recognize its applicability, limitations and inspection data/thickness measurements
- Apply UT measurements, check burst prevention and perform NDE data mapping and visual examination
- Assess local thin area as well as apply thickness readings, stress analysis and piping assessment

FE0570 - Page 2 of 14

FE0570-02-25|Rev.315 |08 November 2024

- Employ proper assessment of pitting corrosion, laminations, weld misalignment, shell distortion, dents, gouges, crack-like flaws, creep and fire damage
- Carryout fitness for service assessment for a drilling platform structure and piping following fire damage
- Perform assessment of hydrogen blisters and hydrogen damage as well as fatigue and API 574 piping inspection
- Employ risk-based inspection, inspection planning and equipment screening

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of fitness-for-service (FFS) of process plant equipment, pressure vessels, piping and storage facilities in accordance with API 579-1/ASME FFS-1 standard. Integrity assessment engineers, maintenance engineers, specialists, site inspection engineers, piping engineers, mechanical engineers, plant engineers, engineers and other technical staff will benefit from the practical approach of this course. The course will also be very useful to those who are responsible in maintaining the integrity of process plant equipment and piping.

Course Fee

US\$ 7,000 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- Hands-on Practical Exercises & Case Studies 30%
- Simulators (Hardware & Software) & Videos 20%

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

FE0570 - Page 3 of 14

Course Certificate(s)

(1)Internationally recognized Competency Certificates and Plastic Wallet Cards will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Certificates are valid for 5 years.

Recertification is FOC for a Lifetime.

Sample of Certificates

The following are samples of the certificates that will be awarded to course participants:-

FE0570 - Page 4 of 14

UKAS **IA** FO/ FE0570-02-25|Rev.315 |08 November 2024

(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.

H	Haward Technolo Continuing Professional De			
	CEU Official Trans	script of Reco	rds	
TOR IssuanceDate	: 14-Nov-21			
HTME No.	8667-2014-9020-2559			
Participant Name:	Waleed Al Habeeb			
				~
Program Ref.	Program Title	Program Date	No. of Contact Hours	CEU's
	API 579-1/ASME FFS-1: Fitness-for-		20	
FE0570 F	Service (FFS) of Process Plant Equipment, ressure Vessels, Piping & Storage Facilities	November 10-14, 2021	28	2.8
FE0570 F	Service (FFS) of Process Plant Equipment, Pressure Vessels, Piping & Storage	November 10-14, 2021	25	2.8
FE0570 F	Service (FFS) of Process Plant Equipment, ressure Vessels, Piping & Storage Facilities	November 10-14, 2021	TRUE COPY Hayfu	De la
FE0570 F	Service (FFS) of Process Plant Equipment, ressure Vessels, Piping & Storage Facilities		TRUE COPY	De la
FE0570 FE0570 Total No. of CEU	Service (FFS) of Process Plant Equipment, pressure Vessels, Piping & Storage acilities s Earned as of TOR Issuance Date has been approved as an Authorized Provider by rative Way, Suite 600, Hemdon, VA 20171, USA. In obtainin	Arthe International Association for Cog	TRUE COPY Jaryl Castillo cademic Director	2.8
FE0570 FE0570 Total No. of CEU Haward Technology (IACET). 2201 Cloop with the ANSI/IACET Provider membership Standard. Haward Technology	Service (FFS) of Process Plant Equipment, pressure Vessels, Piping & Storage iacilities s Earned as of TOR Issuance Date has been approved as an Authorized Provider by rative Way, Suite 600, Hemdon, VA 20171, USA. In obtainin 1-2013 Standard which is widely recognized as the sta- is status, Haward Technology is authorized to offer IA	Ar the International Association for Cc g this approval, Haward Technology andard of good practice internationally. CET CEUs for programs that qualifi- potinuing education requirements for	TRUE COPY Jaryl Castillo cademic Director	2.8 Training thorized '1-2013 ntinuing
FE0570 FE0570 Total No. of CEU (ACET), 2201 Coope with the ANSI/ACET Provider membership Standard. Haward Technology's Education Units (CEI IACET is an internati	bervice (FFS) of Process Plant Equipment, pressure Vessels, Piping & Storage is clilies s Earned as of TOR Issuance Date has been approved as an Authorized Provider by rative Way. Suite 600, Hemdon, VA 20171, USA In obtainin '1-2013 Standard which is widely recognized as the state is status, Haward Technology is authorized to offer IA	the International Association for Co g this approval, Haward Technology andard of good practice internationally. CET CEUs for programs that qualify continuing education requirements for emational Association for Continuing	TRUE COPY Jaryl Castillo cademic Director	2.8 Training somplies thorized '1-2013 ntinuing ACET).
FE0570 FE0570 Total No. of CEU (ACET), 2201 Coope with the ANSI/ACET Provider membership Standard. Haward Technology's Education Units (CEI IACET is an internati	Service (FFS) of Process Plant Equipment, pressure Vessels, Piping & Storage iacilities s Earned as of TOR Issuance Date has been approved as an Authorized Provider by rative Way, Suite 600, Hemdon, VA 20171, USA. In obtainin 1-2013 Standard which is widely recognized as the state s status, Haward Technology is authorized to offer IA courses meet the professional certification and co tayla macordance with the rules & regulations of the Int onal authority that evaluates programs according to bis	the International Association for Co g this approval, Haward Technology andard of good practice internationally. CET CEUs for programs that qualify continuing education requirements for emational Association for Continuing	TRUE COPY Jaryl Castillo cademic Director	2.8 Training somplies thorized '1-2013 ntinuing ACET).
FE0570 FE0570 Total No. of CEU (ACET), 2201 Coope with the ANSI/ACET Provider membership Standard. Haward Technology's Education Units (CEI IACET is an internati	Service (FFS) of Process Plant Equipment, pressure Vessels, Piping & Storage iacilities s Earned as of TOR Issuance Date has been approved as an Authorized Provider by rative Way, Suite 600, Hemdon, VA 20171, USA. In obtainin 1-2013 Standard which is widely recognized as the state s status, Haward Technology is authorized to offer IA courses meet the professional certification and co tayla macordance with the rules & regulations of the Int onal authority that evaluates programs according to bis	The International Association for Co gr this approval, Haward Technology andard of good practice Internationally. CET CEUs for programs that qualified intimuling education requirements for remational Association requirements for remational Association and guideling	TRUE COPY Jaryl Castillo cademic Director	2.8 Training somplies thorized '1-2013 ntinuing ACET).

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• BAC British

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

FE0570 - Page 6 of 14

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Hesham Moharram, is a Senior Inspection Engineer with over 35 years of industrial experience in the Oil & Gas, Refineries and Petrochemical industries. His expertise includes Inspection, Repair, Maintenance, Alteration and Reconstruction of Aboveground Storage Tanks, Pressure Vessels, Piping Inspection, Risk-Based Inspection, Fitnessfor-Service (FFS), Asset Integrity Management, Plant Inspection & Corrosion Engineering, Metallurgy, Corrosion

and Prevention of Failures, Material Selection and Properties, Physical Metallurgy of Steel, Welding Technology, Fabrication & Inspection, Conventional & Advanced Non-destructive Testing (NDT), Process Safety Hazard Analyses (PHA), Risk Assessment, Pigging & Pipe Support and Acoustic Emission. Further, he is also well-versed in Quality Assurance & Quality Control, HAZOP, Permit-to-Work, Hazard Identification, Safety Meeting, Accident Investigation, Emergency Response, Task Risk Assessment, Root Cause & Failure Analysis, Fire Fighting, First Aid Basic, CPR, H₂S Awareness, Distillation Units, Preventive Maintenance, FEED, Contract Management, Stress Management, Coaching & Mentoring Skills, Interpersonal Skills and Communication Skills. He is currently the Senior Inspection Engineer wherein he is responsible in various inspection works like fitness-for-service, remaining life assessments, risk based inspection, intelligent pigging, problematic pipe supports, non-destructive testing and acoustic emission.

Throughout his career life, Mr. Hesham has provided significant contributions to the companies he has worked with, having filled key positions such as being the **Senior Inspection Engineer**, **Inspection Engineer**, **Production Engineer**, **API Instructor**, **QA/QC** and **Supervisor** for international companies such as Abu Dhabi Company for Onshore Oil Operations (ADCO), Suez Oil Company (**SUCO**), Cairo Oil Refining Company (**CORC**) Refinery, DURA Refinery, State Company for Oil Projects (**SCOP-IRAQ**) and **Iron & Steel**.

Mr. Moharram has a **Bachelor** degree in **Metallurgical Engineering**, from the Suez Canal University. Further, he is a **Certified Instructor/Trainer**, a **Certified Pressure Vessel Inspector** (API-510), Certified Piping Inspector (API-570), Certified Aboveground Storage Tanks Inspector (API-653), Certified Risk Based Inspector (API-580), an ASNT Certified Level II in UT, RT, MT, PT and Eddy Current Testing.

FE0570 - Page 7 of 14

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	API 579-1 & ASME FFS-1 StandardsAPI/ASME Standard API 579-1/ASME FFS-1 • ASME B31 Codes • ASME331.3 Process Piping Code • Is fitness-for-service a code? • Standard • TheInspection Drive Mechanisms • Why use a Fitness for Service Assessment? •Failure Conditions and Types of Flaws • Multidisciplinary Nature of FFSAssessment • Fitness-for-Service Assessment Procedure • Levels ofAssessment • Evaluation Methodology • Typical Level 1 Limitations • Level2 Assessment • Acceptance Criteria • Concept of Remaining Strength Factor(RSF) • Calculation of RSF for Corroded Cantilever Pipes with IncreasingCorrosion Levels • Acceptance Criteria
0930 - 0945	Break
0945 - 1100	FFS & Degradation MechanismsBenefitsMatching between Degradation Mechanisms and FFS PartsContents of ASME FFS-1/API 579ASME FFS-1/API 579 ContentsBrittle FractureGeneral Metal Loss (GML)Local Thin Area (LTA)Pitting CorrosionBlisters, HIC and SOHICDistortionCreepPost-FireDent and GougesLaminationsAnnexesto ASME FFS-1 / API 579Plant Engineer PerspectiveWall ThinningCrackingEmbrittlementMechanical DamageFFS Procedures & Level of AssessmentASME FFS-1/API-579ProcedureAPI/ASME FFS Levels of AssessmentGeneral FFS Assessment ProcedureConditions of ApplicabilityDesignMargins for Each FFS Evaluation LevelFailure PreventionPiping CodesB31Boiler & Pressure Vessel Code SectionsStorage TanksOther Codes
1100 – 1200	and Standards • Post-Construction Codes • Design Margin Piping Systems • Case Study -1 • B31.3 Piping System • Parameters • Minimum Wall Thickness by Code (ASME B31.3) • Example • Next Three Steps • Design Margins in Piping Systems • Design Margin Pipelines • Design Margins Pressure Vessels (ASME B&PV)
1200 – 1215	Break
1215 – 1300	FFS of Pipeline, Piping, PV & TankASME B&PV Section II Part DASME II Part DCase Study - 2: ASMEVIII Div.1Minimum Wall Thickness by CodeDesign Margins Tanks API620-650Design Margins – TanksCase Study – 3ExampleWeight StressLongitudinal Stress EquationWeight StressExample: 10 in.NPS, sch.40Bending Stress Due to SagReviewThe Inspector's Calc'sExercisesWho is involved in Fitness-For-Service?Objectives of FFSAssessmentAdvantages of FFS AssessmentCSWIP Plant Inspection

FE0570 - Page 8 of 14

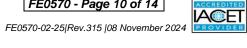
1300 - 1420	Assessment of Existing Equipment for Brittle FractureBrittle FractureLevel 1 Assessment - Applicability and Limitationsis Brittle Fracture?What is Brittle FailureIdentifying Brittle Fracture?What is Brittle FailureFeaturesBrittle Fracture and Material BehaviorFactorsSafeguards Against Brittle FractureBrittle Assessment Procedure for Pressure Vessels and Piping (API RP 579)Figure 3.2 Brittle FractureForacteristics of a Brittle FractureToughness of CS vs. SSBCC Ferrite vs. FCC AusteniteA 370Toughness of CS vs. SSBCC Ferrite vs. FCC AusteniteCContentMovement of Dislocations: DuctileDislocationDrop Weight Tear Test (DWTT) - ASTM E 436 (or API RP 5LR)
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

Day Z	
0730 - 0900	Assessment of Existing Equipment for Brittle Fracture (cont'd)Toughness Measured VisuallyCET - Critical Exposure TemperatureApplicability and Limitations of the ProcedureData RequirementsAssessment Techniques and Acceptance CriteriaRemaining Life AssessmentAcceptability for Continued ServiceToughness and HardnessRequirements for Low Temperature Toughness TestsCase Study 3-1Solution to Case Study 3-1 Assignment of Materials to Curves in Fig. 3.3Notes to Curves in Fig. 3.3Notes to Curves in Fig. 3.3Solution 3-1Solution to Case Study 3-1Material Groups TableASME B&PV Code, Section IXSolution to CaseStudy 3-1 T-Reduction vs. Stress Ratio (API RP 579)NotesCase Study 3-2Case Study 3-3Case Study 3-4High-Pressure Purge VesselProcess Separator VesselPart 3 - Brittle Fracture AssessmentClass Quiz
0900 - 0915	Break
0915 - 1100	Assessment of General Metal Loss (GML)Two Failure Modes: Leak or Burst • Part 4 General Metal Loss • ASME -Three Levels for FFS • Applicability and Limitations • InspectionData/Thickness Measurements • Point Thickness Readings Technique (API 579)• Critical Thickness Profile (CTP)Technique • Spacing of UT Point Readings• Case Study - Storage Tank • Tank Data • ASTM A 283 C • Shell ExternalCorrosion • Shell Inspection • Corrosion in the Tank Shell • Meridional andCirc. Insp. Planes • Inspection Grid • Major Structural Discontinuity •Thickness Measurements (in): 1" x 1" Grid • Future Corrosion Allowance(FCA) • Corrosion Rates: Rule of Thumb • Applicability of GML Part 4 •Conclusion • Case Study - Pressure Vessel • Case Study COV > 10% •Vessel Data
1100 - 1215	Assessment of General Metal Loss (GML) (cont'd)UT MeasurementsUT Measurements at 1" SpacingCheck BurstPreventionAssignmentNDE DataMappingScreeningFFSReportsCaution: DiscontinuitiesCaution: BucklingLevel 3 AnalysisAssignmentInput DataUT Readings are 2 in. ApartReviewHeatExchanger Tube BundleHX DataInspection PlanningRisk-BasedInspection SampleInspection SamplingInspection TechniquesVisualexaminationWhen to plugReplacement PracticeFFS AssessmentReview

FE0570 - Page 9 of 14

AWS


1215 – 1230	Break	
1215 - 1315	Assessment of Local Thin Area (LTA)Local Thin Areas (LTA's)• Starting Point ASME B31G• B31G TableFolias' Formula• Three Assumptions• Case Study 1• Case Study 2 -Evaluate Level 1• Conclusions and Options• Supplemental Case Study: SS-Lined Tank• Level 3 - Section of Vacuum Tower	
1315 – 1420	Assessment of Local Thin Area (LTA) (cont'd)Thickness Readings • Description • Stress-Strain Curve at 350° F • StressAnalysis of Vacuum Tower • Assignment • Review Quiz • PipingAssessment • Stress Analysis • Level 1 Assessment	
1420 - 1430	Recap	
1430	Lunch & End of Day Two	

Dav 3

Day 3	
	Assessment of Pitting Corrosion
	Assessment of Pitting Corrosion • The 8 Standard Templates of Pitting Grades
	• Selection of Pitting Colonies • AP1579-1/ASME-FFS- 1 • Level 1
	Assessment • Determination of RSF using Pitting Grades Templates • Results
	of Level 1 Assessment • Case Study 1 • Question to be Resolved • Lowest Pit
	Density Chart • Highest Pit Density Chart • Interpolate for RSF •
0730 – 0900	Conclusion • Level 2 Assessment • Determination of Pitting Couples •
	Results of Level 2 Assessment • Applicability of Level 2 • Level 3 Assessment
	(Nonlinear FEA) • FE Modelling for Pitted Pipe • Von-Mises Stress
	Distributions from FEA • Distributions of Radial Deformation from FEA •
	Limit Pressures for Pitted Pipes by TES Method • Comparison between the
	Results Obtained using FEA and Part 6 of API-579/ASME-FFS-1 • Case Study
	2 • Input Parameters • Conclusions and Recommendations • Review
0900 - 0915	Break
0900 - 0915	
	Assessment of Laminations
0015 0015	<i>Causes of Laminations</i> • <i>Case Study – Separator and Downstream Reactor</i> •
0915 - 0945	Lamination • General Approach • Detection of Laminations • Forecasting
	Equipment Failure • Acoustic Emission (AE) Testing • What is Acoustic
	Emission (AE) Testing?
	Assessment of Weld Misalignment & Shell Distortion
0945 - 1045	Dent • Weld Misalignment • Level I Assessment • ASME B31.3 •
0343 - 1043	Fabrication Tolerance API 650 and 620 • Level 2 • Case Study 1 •
	Assignment • Level 1 - B31.4 Oil Pipelines • Level 3 – FEA • Review
1045 - 1145	Assessment of Dents & Gouges
	Definition of a Dent • Example of Dent • Pipeline Issue: Large PD/2t •
	Installation of Pipeline • Types of Dents • Kinked Dent • The Significance of
	Dents • ASME B31.8: Must Repair if • Dents on Weld Seams • Burst
	Strength of Dented Welds • Braga Noronha et. al. (Petrobras) • Measurements
	for a FFS Assessment • Fatigue Life of Dented Welds • Fatigue Check •
	Rebound Fatigue Test • Significance of Dents in Pipelines • Gouge • Gouge -
	Dent Combination • Recommendations for the Assessment of Dents •
	Assignment • Level 3 FEM

FE0570 - Page 10 of 14

UKAS

FOA

	Assessment of Crack-like Flaws
	Crack-Like: Incomplete Penetration • Fabrication Flaws • Crack-Like:
	Corrosion Cracking • Crack-Like: Fatigue Crack • Fatigue Crack • Fatigue
	Crack at Intersection • Fatigue Testing of Pipe Fittings • Crack-like Flaws •
	Cycles to Failure (Markl Tests) • Actual Failure vs. B31.3 Markl Limit SA •
1145 - 1230	ASME B&PV Design Fatigue Curves (CS in air) • API 579 Fatigue Curves •
	Running Crack? • Introduction to Fracture Mechanics • Crack Opening
	Displacement (COD) • 1st Condition of Crack Stability • 2nd Condition of
	<i>Crack Stability</i> • <i>Three Modes of Fracture</i> • <i>Stress Intensity – General Form</i> •
	How to Obtain KIC (the stress intensity limit to start a crack in mode I)? •
	Three Assessment Levels • Complex Geometry • Crack from Expansion-
	Contraction • Liquid Penetrant Test (PT) of Crack • Case Study 9-1 •
	Corrosion Crack
1230 - 1245	Break
	Assessment of Crack-like Flaws (cont'd)
	Class Exercise 9-2 • Case Study 9-3 • Pipeline • Stress Ratio Lr • Stress
	Intensity K • Approximate Mode I Stress Intensity Factor at the Crack (KIC) •
	Lower Bound Ferritic Steels • Calculate Reference Temperature (Tref) • Figure
	3.4 (API RP 579, 2007) • Example: Stress Intensification Factor, Mode I (KIC)
	• Stress Intensity Ratio Kr • Failure Assessment Diagram (FAD) • How will
1245 - 1400	the Crack Size Progress? • Increment of Crack Growth for a Given Cycle
	$(da/dN) \bullet da/dN$, but ΔK is complex \bullet Computational Fluid Dynamics (CFD)
	Simulation • Experimental Benchmark • Reactor Vessel Penetrations PWSCC
	• Control Rod Drive Mechanism (CRDM) Penetration • Stress Growth
	Velocity (da/dt) • Level 2 - Complete Analysis • Serious Complications for the
	Analysis • Leak-before-Break • Crack Stability Analysis • Level 3 - High
	<i>Pressure Fitting</i> • <i>FFS of Down-Comer Flaws Increasing Crack Depth (a)</i> • <i>Review</i>
	Assessment of Creep
1400 – 1420	What is Creep? • Creep Characteristics • The Three Creep Stages • Creep
	Mechanism • Assessment of Creep Damage • Understanding the Effects of
	Creep• Creep Strain at Constant Pressure • Creep Voids • Burst of
	Longitudinal Seam • Mohave Power Station, 1985:30 in. 600 psi @ 1000° F •
	Mohave Power Station, 1985 – Laughlin, Nevada • Δ Life vs. Δ Temperature •
	Temperature Profile is Critical • Remaining Life Assessment • Level 1 - Creep
	Assessment Procedure • Level 1 Assessment • Level 2 Assessment • Furnace
	Tube Example • Case Study 10-1 • Material • Measurement • Larson-
	Miller Parameter (LMP) • API 530 Larson-Miller Parameter (LMP) •
	Remaining Life
1420 – 1430	Recap
1430	Lunch & End of Day Three

FE0570 - Page 11 of 14

Day 4	
	Assessment of Creep (cont'd)
	Replication • Weld-O-Let Connections and Creep Damage • Creep Failures
	• Comparison of Creep Stresses at 10,000 Hours for Various Special Alloys used
	in High-Temperature Service • What is Creep? • Larson-Miller Parameter •
	MPC Omega Method • Modeling Creep Behavior • Why Do Creep Life
0730 - 0830	Assessment? • Inputs for Heater Tube Assessment • API 579-1 / ASME FFS-
	1 Creep Life Assessment • Example: Remaining Life Results • Why Do Creep
	Testing? • Guidelines for Tube Removal • Coker Heaters • Case Study:
	Background • Case Study: Omega vs. LMP • Other Damage Mechanisms •
	Carburization • Sigma Phase Embrittlement • External Oxidation • Erosion
	Challenges Predicting Life Review Quiz
	Assessment of Fire Damage
	Fire Damage • Data Requirements • Data Required for Assessment •
0830 - 0900	Degradation Associated with HEZ • General Approach • Heat Exposure •
0000 0000	Heat Exposure Zone • Inspection Techniques • Measurements • Assessment
	Techniques • Level I Assessment Repairs – Replacements • Case Study •
	Observations from Fire • Conclusions • Actions
0900 - 0915	Break
	Fitness for Service Assessment for a Drilling Platform Structure and
	Piping Following Fire Damage
	Introduction • Fig.1. Consequences of Fire Damage • Fig.2. Identification of
0915 – 1000	the 6 Heat Exposure Zones Level-1 Assessment • The Three Levels of
	Assessment of Fire Damage • Specifications of Features of the 6 Fire Zones •
	Level-2 Assessment • Hardness Survey on Fire-Affected Piping • Results of
	FFS Assessment • Pressure De-Rating of Heat Affected Piping • Outcomes of
	FFS Assessment of Fire Damage
	Assessment of Hydrogen Blisters & Hydrogen Damage Stress-Oriented Hydrogen Induced Cracking • Assessment of Blisters and
	Hydrogen Induced Cracking • Surface Bulging Due to Blisters • Detection,
1000 – 1100	Characterization, and Sizing • Detection, Characterization, and Sizing of
1000 - 1100	Blister Damage • Detection and Sizing of HIC Damage • Level I Acceptable if
	• Case Study 1 • Assignment Level 1 – Same Vessel • How to Prevent
	Hydrogen Blistering
	Fatigue Assessment
	Fatigue Assessment • Level 1 Fatigue Assessment-Screening • Level 2
1100 – 1200	Fatigue Assessment • Level 2 Fatigue Assessment Method C • Level 3
	Fatigue Assessment
1200 - 1215	Break
	API 574 Piping Inspection
1215 - 1420	Piping Inspection Introduction • Basic Piping Inspection Program Goals •
	Pressure Vessel Stress Areas • Basic Piping Inspection • Basic Piping
	Inspection for Corrosion
1420 – 1430	Recap
1430	Lunch & End of Day Four

FE0570 - Page 12 of 14

Day 5

Day 0	
0730 – 0815	API 574 Piping Inspection (cont'd)Selecting Corrosion Monitoring Locations• Remote Corrosion Monitoring
	System • Basic Piping Inspection • Piping Injection Point Example • Piping
	Injection Point Example 2
	Risk-Based Inspection
0815 - 0930	Inspection Plan • Inspection Techniques • Visual Examination • Magnetic
	Particles Testing (MT) • Yoke and Fluorescent MT • MT: Advantages and
	Limitations • Liquid Penetrant Testing (PT) • PT: Advantages and
	<i>Limitations</i> • 4. <i>Replication</i> • <i>Radiographic Testing (RT)</i> • <i>RT: Advantages</i>
	and Limitations • RT Through Insulation • Digital Radiography •
0930 - 0945	<i>Ultrasonic Testing (UT)</i> • <i>Through-transmission Shear waves (angle beam)</i> <i>Break</i>
0930 - 0943	Risk-Based Inspection (cont'd)
	Classic Shear Wave Angle Beam • Phased-Array • Long Range Guided Wave
	(Ultrasound) • Guided Wave Transducers • Corroded Sphere Support Legs •
0945 - 1100	Inspections • Results • Eddy Current Testing (EC) • Eddy Current Testing
	• Pulsed Eddy Current • Magnetic Flux Leakage • Infrared Thermography •
	Acoustic Emission Testing (AE) • AE: Advantages and Limitations • AE
	Controls • Laser Mapping
	Inspection Planning
	What is RBI? • Objectives of RBI • RBI Benefits and Limitations • Outcome
	of an RBI? • International Standards • Type of RBI Assessment • RBI Planning Process Overview • Data Collection • Identification of Damage
	Mechanisms • Probability of Failure • Consequence of Failure • Risk
	Analysis • Inspection Planning • Mitigation • Reassessment and Updating
1100 – 1200	RBI Assessments • RBI Softwares • RISKWISE • System Overview • RBI
	Example – Quantitative Assessment of a Boiler • Application Selection •
	Current Table • Item Proposal • Item Properties • Risk Factors • Risk
	Analysis • Level 1 Assessment • Home • Unit Proposal • Unit Analysis •
	RBI ProcessRisk = Likelihood x ConsequenceQualitative ApproachCUI LikelihoodRBI TeamLikelihood = Corrosion LoopsConsequence
	= Contents + Environment
1200 - 1215	Break
	Equipment Screen
1215 – 1300	Fluid Screen • History Screen • Scenarios Screen • Actions Screen •
	<i>Mitigation Plan</i> • <i>Likelihood</i> = A (<i>low</i>) to E (<i>high</i>) Consequence = I (<i>low</i>) to IV
1200 1215	(high) • Risk-based Inspection Intervals • Effective RBI Program • Review
1300 - 1315	Course Conclusion
1315 - 1415 1415 - 1430	COMPETENCY EXAM Preconstation of Course Cartificates
1415 - 1450	Presentation of Course Certificates Lunch & End of Course
1430	

FE0570 - Page 13 of 14

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the simulator "IntegriWISETM".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

FE0570 - Page 14 of 14

FE0570-02-25|Rev.315 |08 November 2024