

COURSE OVERVIEW RE0996 REAM (Reliability, Engineering, Asset & Maintenance)

Course Title

REAM (Reliability, Engineering, Asset & Maintenance)

Course Date/Venue

November 23-27, 2025/Tunis 2 Meeting Room. Mövenpick Hotel Apartments Downtown Dubai, Dubai, UAE

Course Reference

RE0996

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Reliability, Engineering, Asset and Maintenance (REAM). It covers the reliability engineering concepts, failure mechanisms and modes; the asset life cycle management, risk management framework, risk assessment methodologies, FMEA and FMECA and criticality analysis; the sources of reliability failure reporting & data, analysis systems (FRACAS) and Weibull analysis basics; and the engineering for reliability, maintenance engineering concepts and root cause failure analysis (RCFA).

During this interactive course, participants will learn the reliability testing and qualification, engineering standards and compliance and asset management principles; the asset performance management (APM), asset risk and reliability strategies, asset investment and capital planning; the digitalization in asset management, maintenance fundamentals and reliability-centered maintenance (RCM); the condition-based maintenance total (CBM), productive maintenance (TPM) and maintenance planning and scheduling; and the maintenance optimization techniques, integrated framework and change management in REAM.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on reliability, engineering, asset and maintenance (REAM)
- Discuss the reliability engineering concepts, failure mechanisms and modes
- Illustrate asset life cycle management, risk management framework, risk assessment methodologies, FMEA and FMECA and criticality analysis
- Identify sources of reliability data, failure reporting & analysis systems (FRACAS) and Weibull analysis basics
- Carryout engineering for reliability, maintenance engineering concepts and root cause failure analysis (RCFA)
- Recognize reliability testing and qualification, engineering standards and compliance and asset management principles
- Apply asset performance management (APM), asset risk and reliability strategies, asset investment and capital planning
- Carryout digitalization in asset management, maintenance fundamentals and reliability-centered maintenance (RCM)
- Employ condition-based maintenance (CBM), total productive maintenance (TPM) and maintenance planning and scheduling
- Illustrate maintenance optimization techniques, integrated REAM framework and change management in REAM
- Differentiate leading versus lagging indicators and apply asset reliability KPIs, maintenance efficiency KPIs and balanced scorecard approach

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of REAM (reliability, engineering, asset and maintenance) for reliability engineers, asset integrity engineers, maintenance engineers, operations and production managers, engineering managers, technical managers, plant managers, asset management professionals, maintenance planners, schedulers, supervisors, quality assurance, risk management specialists and other technical staff.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is Senior Mechanical & Maintenance Engineer with over 45 years of extensive industrial experience within the Power & Water Utilities and other Energy Sectors. His wide expertise includes Reliability Management, Reliability Centered Maintenance Principles & Application, Machinery Lubrication, Advanced Techniques in Maintenance Management, Predictive & Preventive Maintenance, Maintenance & Operation Cost Reduction Techniques, Reliability Centered Maintenance

(RCM), Machinery Failure Analysis, District Cooling Plant, District Cooling Plant Operations, HVAC Basics, HVAC&R, KOTZA, Refrigeration, Modern HVAC & Refrigeration Systems Design, Utilization, Operation & Effective Maintenance, Control Valve & Actuators, Fire Safe Valves, Piping & Pipeline, Maintenance, Repair, Shutdown, Turnaround & Outages, Maintenance & Reliability Management, Mechanical Maintenance Planning, Scheduling & Work Control, Rotating Equipment Reliability Optimization & Continuous Improvement, Material Cataloguing, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Root Cause Analysis & Reliability Improvement, Condition Monitoring, Root Cause Failure Analysis (RCFA), Steam Generation, Steam Turbines, Power Generator Plants, Gas Turbines, Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, Heat Exchangers, Heat Transfer, Coolers, Power Plant Performance, Efficiency & Optimization, Storage Tank Design & Fabrication, Thermal Power Plant Management, Boiler & Steam System Management, Pump Operation & Maintenance, Chiller & Chiller Plant Design & Installation, Pressure Vessel, Safety Relief Valve Sizing & Selection, Valve Disassembling & Repair, Pressure Relief Devices (PSV), Hydraulic & Pneumatic Maintenance, Advanced Valve Technology, Pressure Vessel Design & Fabrication, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearing Installation, Couplings, Clutches and Gears. Further, he is also versed in Wastewater Treatment Technology, Networking System, Water Network Design, Industrial Water Treatment in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the Project Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Subcontractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a Registered Professional Engineer in the USA and Greece and has a Master's and Bachelor's degree in Mechanical Engineering with Honours from the Purdue University and SIU in USA respectively as well as an MBA from the University of Phoenix in USA. Further, he is a Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM) a Certified Instructor/Trainer and has delivered numerous trainings, courses, seminars, workshops and conferences worldwide.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 23rd of November 2025

Day 1.	Sunday, 25 Of November 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to REAM
0830 - 0930	Scope & objectives of REAM • Key Principles & Terminology • Evolution from
	RCM to REAM • Business Value of REAM
0930 - 0945	Break
	Reliability Engineering Concepts
0945 - 1030	Reliability Definitions & Measures • MTBF, MTTR & Failure Rate • Failure
	Distribution Models • Reliability Block Diagrams
	Failure Mechanisms & Modes
1030 - 1130	Types of Equipment Failures • Mechanical versus Electrical Failures • Human
	& Process Failures • Case Studies of Critical Failures
	Asset Life Cycle Management
1130 – 1215	Stages of Asset Life Cycle • Reliability Considerations at Each Stage • Asset
	Criticality Ranking • Cost versus Performance Trade-offs
1215 – 1230	Break
	Risk-Based Approaches
1230 – 1330	Risk Management Framework • Risk Assessment Methodologies • FMEA &
	FMECA • Criticality Analysis
	Reliability Data & Analysis Tools
1330 - 1420	Sources of Reliability Data • Failure Reporting & Analysis Systems (FRACAS)
	• Weibull Analysis Basics • Software Tools for Reliability
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Mondav. 24th	of November 2025
--------	--------------	------------------

Duy L.	monday, 24 Or November 2020
0730 - 0830	Engineering for Reliability Design for Reliability (DfR) Principles • Design Reviews & Validation • Stress-Strength Analysis • Reliability Growth Testing
0830 - 0930	Maintenance Engineering Concepts Reliability-Centered Maintenance (RCM) Overview • Preventive versus Predictive Maintenance • CBM (Condition-Based Maintenance) Principles • TPM (Total Productive Maintenance)
0930 - 0945	Break
0945 – 1100	Root Cause Failure Analysis (RCFA) Purpose & Methodology • Cause-&-Effect Diagrams • 5-Why Analysis • Case Applications
1100 – 1215	Reliability Testing & Qualification Test Plans & Protocols • Accelerated Life Testing • Environmental & Stress Testing • Interpreting Test Results
1215 – 1230	Break
1230 - 1330	Engineering Standards & Compliance ISO 55000 (Asset Management) • ISO 14224 (Reliability Data Collection) • IEC 60300 Series (Dependability) • Industry Best Practices
1330 – 1420	Reliability Modelling & Simulation Fault Tree Analysis (FTA) • Event Tree Analysis (ETA) • Monte Carlo Simulation • Digital Twins for Reliability
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3: Tuesday, 25th of November 2025

Day 3:	ruesday, 25 th of November 2025
	Asset Management Principles
0730 - 0830	Definition & Scope of Asset Management • ISO 55000 Framework • Linking
	Strategy to Asset Performance • Asset Value Realization
	Asset Performance Management (APM)
0830 - 0930	KPIs for Asset Performance • Performance Monitoring Techniques • Failure
	Trend Analysis • Benchmarking
0930 - 0945	Break
	Asset Risk & Reliability Strategies
0945 - 1100	Reliability-Based Maintenance • Risk-Based Inspection (RBI) • Risk-Based
	Maintenance (RBM) • Lifecycle Costing
	Asset Criticality & Prioritization
1100 - 1215	Critical Equipment Ranking • Risk Matrix Application • Cost versus Risk
	Optimization • Decision-Making Frameworks
1215 - 1230	Break
	Asset Investment & Capital Planning
1230 - 1330	CAPEX versus OPEX Trade-offs • Asset Replacement Strategies • ROI on
	Reliability Investments • Financial Modelling for Assets

1330 – 1420	Digitalization in Asset Management Role of IoT & Industry 4.0 • Smart Sensors & Condition Monitoring • Digital Asset Registry • AI & Machine Learning Applications
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4: Wednesday, 26th of November 2025

Day 4:	Wednesday, 26" of November 2025
0730 - 0830	Maintenance Fundamentals
	Evolution of Maintenance Practices • Preventive Maintenance Strategies •
	Predictive Technologies Overview • Proactive Maintenance Culture
	Reliability-Centered Maintenance (RCM) in Detail
0830 - 0930	RCM Methodology Steps • Functions & Functional Failures • Maintenance
	Task Selection • Implementation Challenges
0930 - 0945	Break
	Condition-Based Maintenance (CBM)
0945 - 1100	Condition Monitoring Technologies • Vibration, Oil, Thermal & Acoustic
0545 - 1100	Analysis • Prognostics & Health Management (PHM) • CBM Implementation
	Case Studies
	Total Productive Maintenance (TPM)
1100 – 1215	TPM Pillars & Objectives • Autonomous Maintenance • OEE (Overall
	Equipment Effectiveness) • Continuous Improvement
1215 – 1230	Break
	Maintenance Planning & Scheduling
1230 – 1330	Work Order Systems • Planning versus Scheduling Roles • Backlog
	Management • Planning KPIs
1330 – 1420	Maintenance Optimization Techniques
	Reliability versus Cost Optimization • Decision Analysis Tools • Shutdown &
	Turnaround Management • CMMS & EAM Software Integration
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5: Thursday, 27th of November 2025

zay o.	marcady, 27 or morombor 2020
	Integrated REAM Framework
0730 - 0830	Synergy Between Reliability, Engineering, Asset & Maintenance • REAM
	Maturity Model • Organizational Integration • Roadmap for REAM Adoption
	Change Management in REAM
0830 - 0930	Organizational Culture & REAM Success • Overcoming Resistance to Change
	• Leadership & Stakeholder Engagement • Communication Strategies
0930 - 0945	Break
	Performance Measurement & KPIs
0945 - 1100	Leading versus Lagging Indicators • Asset Reliability KPIs • Maintenance
	Efficiency KPIs • Balanced Scorecard Approach
	Case Studies & Best Practices
1100 – 1215	REAM in Oil & Gas Sector • REAM in Power Generation • REAM in
	Manufacturing • Lessons Learned



1215 - 1230	Break
	Future Trends in REAM
1230 - 1345	Artificial Intelligence in Reliability • Digital Twins for Asset Health •
	Predictive Analytics & Big Data • Sustainability & Green Asset Management
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulator "MTBF Calculator" and "ManWinWin Express CMMS Software".

MTBF Calculator

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

