

COURSE OVERVIEW PE0127 Operations Abnormalities & Plant Upset

Course Title

Operations Abnormalities & Plant Upset

Course Date/Venue

October 26-30, 2025/Board Meeting Room, Gezi Hotel Bosphours, Istanbul, Turkey

Course Reference

PE0127

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a up-to-date overview detailed and of Operations Abnormalities & Plant Upset. It covers the normal and abnormal operations, types and categories of abnormal situations; the root causes of plant upsets, early warning signs and alarm management; the risk assessment during abnormal conditions by identifying and evaluating risks, using risk matrices and consequence analysis and barriers and safeguards; the pressure vessel, tank upsets, pumps, compressors and mechanical equipment failures; the heat exchanger and furnace abnormalities, reactors and process chemistry deviations; the utility and support system failures, control loop and instrumentation issues; the systematic troubleshooting approach, process data and trends; and the communication and shift handover best practices.

During this interactive course, participants will learn the emergency operations, safe shutdown and managing human error in upset situations; the process hazard analysis (PHA), design considerations to minimize upsets, predictive maintenance and condition monitoring; the process hazard analysis (PHA), design considerations to minimize upsets, predictive maintenance and condition monitoring; the abnormal situation management (ASM) framework, incident investigation, root cause analysis (RCA) and cross-functional coordination during upsets; the reporting and documentation of abnormalities; and the management of change (MOC) during upsets.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain in-depth knowledge on operations abnormalities and plant upset
- Discuss the normal and abnormal operations, types and categories of abnormal situations, root causes of plant upsets and early warning signs and alarm management
- Carryout risk assessment during abnormal conditions by identifying and evaluating risks, using risk matrices and consequence analysis and barriers and safeguards
- Identify pressure vessel and tank upsets, pumps, compressors and mechanical equipment failures and heat exchanger and furnace abnormalities
- Recognize reactors and process chemistry deviations, utility and support system failures and control loop and instrumentation issues
- Employ systematic troubleshooting approach, process data and trends and communication and shift handover best practices
- Apply emergency operations and safe shutdown and manage human error in upset situations
- Implement process hazard analysis (PHA), design considerations to minimize upsets, predictive maintenance and condition monitoring
- Apply alarm rationalization and management, operator training and simulation, incident investigation (RCA) follow-up, updating SOPs and work instructions and continuous improvement systems
- Describe abnormal situation management (ASM) framework, incident investigation and root cause analysis (RCA) and cross-functional coordination during upsets
- Report and document abnormalities and apply management of change (MOC) during upsets

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of operations abnormalities and plant upset for superintendents, supervisors and foremen in various departments of process plants (production, operations, maintenance, utility, etc.). Further, the course is suitable for emergency teams, managers, supervisors and other technical staff.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Emad Al-Hasany, PhD is a Senior Process & Petroleum Engineer with Offshore & Onshore experience within the Oil & Gas, Refinery and Petrochemical industries. His wide expertise covers in the areas of Process Plant Commissioning, Cost Estimation, Process Plant Start-Up Management, Clean Fuel Technology & Standards, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Heat Medium Fired Heater Troubleshooting & Maintenance, Process **Reactor** Operation Troubleshooting, **Process** Equipment Design, Sizing, Selection, Applications & Troubleshooting, Process Engineering Calculations, Gas Processing Plant Operations & Control, Gas Processing Monitoring &

Troubleshooting, Process Plant Optimization & Energy Conservation, Hydro-Treating Technology, Oil & Gas Field Operations, Oil Movement, Storage & Troubleshooting, Start-Up & Shutdown, Gas/Oil Separates, Surge Vessels, Sludge Catcher, Knockout LP & HP Flare System, Close & Open Drain System, Skimmer Pit Evaporation Pit System, Filters, Driers, Pumps, Turbines, Compressors, York Refrigeration Compressors, Heaters & Combustion Gases Fire, Emergency Diesel Generators, Electrical & Diesel Fire Water Pumps, Gas & Fire Detectors, Pig Launcher, Purging Pipelines, Pressurized Vessels, Heat Exchangers, Atmospheric, Flash, Vacuum, Azeotrpic, Weiss Fractional Distillation, Oil & Gas Treatment, Separators, Filtration, Dehydration (Glycol & Molecular Sieves System), Fire Tube Heaters, Combustion Gas, Temperature Level, Control Valves, Solenoid Valves, Cascade Control, Switches, Transmitter, Transducer, RTD Sensitivity, Orifice Plat, I/P Converter, Rot Meter, Floating, Displacer, DP Cells, PIDs, Flare Relief Blowdown Pressure Systems, Pumps, Compressors, Troubleshooting, Centrifugal Compressor & Steam Turbine, Valves, Safety Relief Valve Sizing, Selection, Operation, Inspection, Maintenance & Troubleshooting, Tank & Tank Hydraulic Pump, Well Engineering, Acidation, Wellheads Preparing & Maintenance, Well Operations & Surveys, Well Stimulation, Logging and Reservoir Engineering. Further, he is also well-versed in HYSYS, PRO II, OLGA, PIPESIM, PETREL, Artificial Lift, First Aid & Firefighting, Environment Protection, NORM Awareness, SHOC (Safe Handling of Chemicals), Permit to Work (PTW), HSE Auditing & Reporting, Emergency Response, Defensive Driving, H2S, Accident/Incident Investigation, Process Safety Management, Root Cause Analysis, OSHA General Industry, Water Injection, Water Treatment, HAZOP, Risk Assessment, Gas Chromatography, Corrosion and Cathodic Protection.

During his career life, Dr. Emad has gained his practical and field experience through his various significant positions and dedication as the **Production Main Station Manager**, **Manager**, **Production Superintendent**, **Production Supervisor**, **Production Engineer**, **HAZOP Consultant**, **Instructor** and **Lecturer** for various companies and universities such as the AL-Euphrates University, Dero Oilfields, Syrian Petroleum Company (SPC), Kokab Co. and Alharratah Oilfield.

Dr. Emad has a **PhD** in **Reservoir Management**, a **Master** degree in **Production Engineering** and a **Bachelor** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** and has further delivered numerous training, courses, workshops, seminars and conferences worldwide.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 6,000 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 26th of October 2025

0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Understanding Normal versus Abnormal Operations Definitions and Distinctions • Indicators of Abnormal Conditions • Impact on Safety, Quality, and Production • Common Causes in Process Industries
0930 - 0945	Break
0945 – 1030	Types & Categories of Abnormal Situations Equipment-Related Upsets • Process Chemistry Deviations • External Factor- Induced Abnormalities • Control System Failures
1030 - 1130	Root Causes of Plant Upsets Mechanical Failures • Instrumentation/Control Failures • Human Error and Misoperation • Raw Material and Feedstock Variations
1130 – 1215	Early Warning Signs & Alarm Management Recognizing Early Indicators • Role of Alarm Systems in Detection • Nuisance Alarms versus Critical Alarms • Prioritizing Operator Response
1215 - 1230	Break
1230 – 1420	Risk Assessment during Abnormal Conditions Identifying and Evaluating Risks • Using Risk Matrices and Consequence Analysis • Barriers and Safeguards • Immediate versus Long-Term Actions
1330 – 1420	Case Studies of Major Industrial Upsets Real-World Incidents and Causes • Lessons Learned • Mitigation Practices Used • How to Apply Lessons Locally
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Monday, 27th of October 2025
--------	------------------------------

Day Z.	Monday, 27 Of October 2025
	Pressure Vessel & Tank Upsets
0730 - 0830	Overpressure Scenarios • Vacuum Conditions and Collapse • Relief Valve
	Failures • Foam, Carryover and Contamination
	Pumps, Compressors & Mechanical Equipment Failures
0830 - 0930	Cavitation and Vibration Issues • Seal and Bearing Failures • Reciprocating
	versus Centrifugal Upsets • Diagnostic Tools for Troubleshooting
0930 - 0945	Break
	Heat Exchanger & Furnace Abnormalities
0945 - 1100	Fouling and Plugging • Tube Rupture and Leaks • Burner Instability • Effects
	on Downstream Operations
	Reactors & Process Chemistry Deviations
1100 - 1230	Catalyst Deactivation • Exothermic Runaway Reactions • Feed Composition
	Change Impacts • Temperature/Pressure Control Loss
1230 - 1245	Break
	Utility & Support System Failures
1245 - 1330	Cooling Water Failure • Steam System Upsets • Instrument Air Loss • Power
	Failure and Backup Systems
	Control Loop & Instrumentation Issues
1330 - 1420	Sensor Drift and Failure • Controller Tuning Problems • Valve Malfunction •
	DCS and PLC Errors
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3: Tuesday, 28th of October 2025

Day 3.	ruesuay, 26° Or October 2025
0730 – 0830	Systematic Troubleshooting Approach
	Defining the Problem • Root Cause Hypothesis • Data Collection & Trend
	Analysis • Validating Solutions
0830 - 0930	Use of Process Data & Trends
	Analyzing Real-Time Process Trends • Pattern Recognition • Identifying
	Leading versus Lagging Indicators • Historical Data Correlation
0930 - 0945	Break
0945 – 1100	Communication & Shift Handover Best Practices
	Structured Communication Protocols • Ensuring Situational Awareness •
	Logbook and Verbal Handover Methods • Avoiding Miscommunication
1100 1220	Emergency Operations & Safe Shutdown
	Emergency Response Plans • Partial versus Full Shutdown Procedures •
1100 – 1230	Interlocks and Safety Instrumented Systems (SIS) • Operator Responsibilities
	Under Upset
1230 - 1245	Break
1245 – 1330	Managing Human Error in Upset Situations
	Understanding Cognitive Load • Human-Machine Interface (HMI) Challenges
	• Reducing Reliance on Operator Memory • Tools for Decision Support

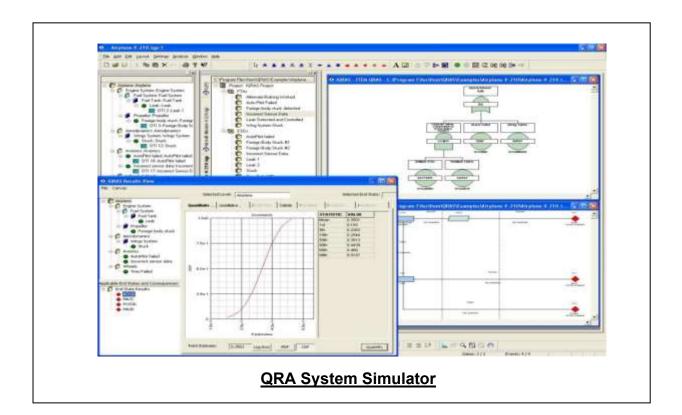
1330 – 1420	Case Studies on Diagnosing Complex Upsets Multi-Factor Upset Scenarios • Escalation Due to Misdiagnosis • Coordination Across Departments • Recovery and Investigation
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

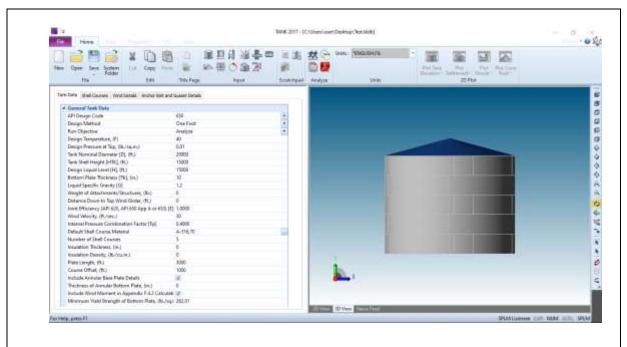
Day 4: Wednesday, 29th of October 2025

Day 4:	wednesday, 29" of October 2025
0730 - 0830	Process Hazard Analysis (PHA)
	HAZOP and What-If Reviews • Identifying Abnormal Scenarios • Safeguard
	Verification • Integration with MOC Process
	Design Considerations to Minimize Upsets
0830 - 0930	Design Margins and Redundancy • Equipment and Control System Selection •
	Layout to Support Troubleshooting • Built-In Safety Systems
0930 - 0945	Break
	Predictive Maintenance & Condition Monitoring
0945 - 1100	Vibration Analysis and Thermography • Oil Analysis and Corrosion
0943 - 1100	Monitoring • Predictive Analytics in Abnormality Prevention • Link with
	Reliability-Centered Maintenance
	Alarm Rationalization & Management
1100 - 1230	Alarm Prioritization • Elimination of Nuisance Alarms • Alarm Shelving and
	Suppression • Operator Overload Avoidance
1230 - 1245	Break
	Operator Training & Simulation
1245 - 1330	Scenario-Based Simulator Training • Emergency Drills • Process Simulation
	Software • Learning from Mock Upsets
	Implementing Lessons Learned
1330 - 1420	Incident Investigation (RCA) Follow-Up • Sharing Learnings Across Teams •
	Updating SOPs and Work Instructions • Continuous Improvement Systems
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

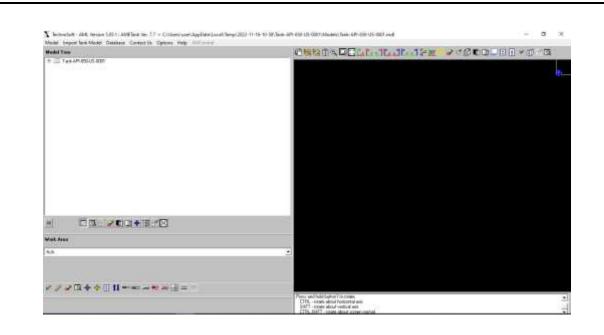
Day 5: Thursday, 30th of October 2025

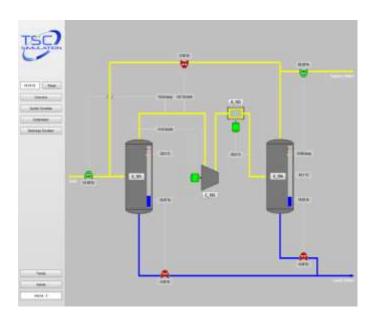
	111a1 Guay, 66 61 Gotobol 2020
	Abnormal Situation Management (ASM) Framework
0730 - 0830	What is ASM? • ASM Lifecycle and Strategies • Role of Automation and
	Control • Industry Standards for ASM
	Incident Investigation & Root Cause Analysis (RCA)
0830 - 0930	Types of Investigations (5 Whys, Fishbone, Etc.) • Gathering Facts and
	Timeline • Recommendations and Follow-Up • Communication of Findings
0930 - 0945	Break
	Cross-Functional Coordination during Upsets
0945 - 1100	Role of Operations, Maintenance, and Safety • Roles and Responsibilities •
	Decision-Making Authority • Crisis Management Coordination
	Reporting & Documentation of Abnormalities
1100 - 1230	What to Document and Why • Tools (eLogs, EHS Systems) • Trend Analysis
	from Reports • Compliance and Audit Trail
*	PE0127 - Page 7 of 11

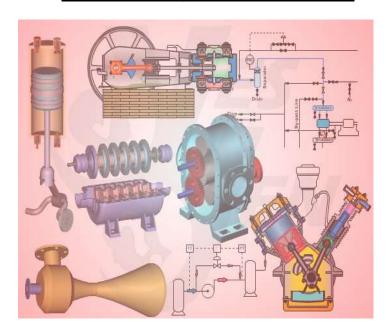


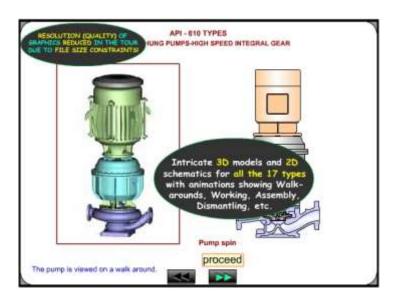

1230 – 1245	Break
	Management of Change (MOC) during Upsets
1245 - 1345	Temporary versus Permanent Changes • MOC Process during Emergency Fixes
	• Ensuring Proper Review and Sign-Off • Integrating with PSM
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

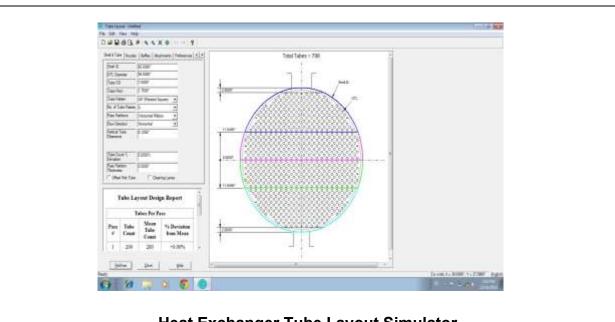
Simulator (Hands-on Practical Sessions)


Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "QRA System" simulators," Hexagon PPM COADE TANK 2017 SP1 v9.00.01 (Integraph Tank)", "AME Tank v7.7", "SIM 3300 Centrifugal Compressor Simulator", CBT on Compressors", "Centrifugal Pumps and Troubleshooting Guide 3.0" and "Heat Exchanger Tube Layout Simulator


Hexagon PPM COADE TANK 2017 SP1 v9.00.01 (Integraph Tank)


AME Tank v7.7


SIM 3300 Centrifugal Compressor Simulator


CBT on Compressors

Centrifugal Pumps and Troubleshooting Guide 3.0

Heat Exchanger Tube Layout Simulator

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

