

COURSE OVERVIEW PE1057 PVC Grades versus Product Application

O CEUS

(30 PDHs)

Course Title

PVC Grades versus Product Application

Course Reference

PE1057

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Course Date	Venue
1	June 15-19, 2025	
2	August 17-21, 2025	Meeting Plus 9, City Centre Rotana, Doha, Qatar
3	November 02-06, 2025	

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of PVC Grades versus Product Application. It covers the PVC (Polyvinyl Chloride), history and global market outlook, types and structure-property relationships; the PVC grades, resin manufacturing and quality parameters, thermal, mechanical and rheological properties, additive systems for PVC and PVC processing techniques; the properties of rigid PVC grades, PVC for pipes and fittings, window profiles, siding and building profiles and rigid PVC in bottles and containers; the sheets, films and thermoforming, rigid foam boards and WPC; the flexible PVC properties and applications; and the wire and cable insulation and jacketing.

Further, the course will also discuss the PVC for medical and pharmaceutical use, flexible PVC in flooring and wall coverings, artificial leather and automotive interiors and inflatable, sealing and dipping applications; the CPVC (Chlorinated PVC) grades, high-impact and weatherable PVC grades, transparent and high clarity PVC; and the PVC/NBR and PVC/PU blends.s

PE1057 - Page 1 of 9

During this interactive course, participants will learn the flame retardant and smoke suppressed PVC, sustainable PVC and recycling techniques, PVC testing and quality control; the regulatory and environmental compliance and packaging industry applications; the automotive and transportation applications; and the building and infrastructure applications.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an in-depth knowledge on PVC grades versus product application
- Discuss PVC (Polyvinyl Chloride) and its history and global market outlook, types and structure-property relationships
- Classify PVC grades and explain resin manufacturing and quality parameters, thermal, mechanical and rheological properties, additive systems for PVC and PVC processing techniques
- Explain the properties of rigid PVC grades, PVC for pipes and fittings, window profiles, siding and building profiles and rigid PVC in bottles and containers
- Determine sheets, films and thermoforming, rigid foam boards and WPC, flexible PVC properties and applications and wire and cable insulation and jacketing
- Recognize PVC for medical and pharmaceutical use, flexible PVC in flooring and wall coverings, artificial leather and automotive interiors and inflatable, sealing and dipping applications
- Describe CPVC (Chlorinated PVC) grades, high-impact and weatherable PVC grades, transparent and high clarity PVC and PVC/NBR and PVC/PU blends
- Discuss flame retardant and smoke suppressed PVC, sustainable PVC and recycling techniques, PVC testing and quality control as well as the regulatory and environmental compliance and packaging industry applications
- Carryout automotive and transportation applications and building and infrastructure applications

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of PVC grades versus product application for product design and development engineers, materials and polymer engineers, manufacturing and process engineers, quality assurance and testing professionals, procurement and sourcing specialists, sales and application engineers (techno-commercial roles), product managers and R&D professionals, regulatory and compliance officers.

PE1057 - Page 2 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's Certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training
(IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE1057 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Pete Ludovice, PhD, BSc, is a Senior Chemical Engineer with over 25 years of extensive experience in Plastics/Rubber Additives, Thermoplastics Processing, Plastic Materials, Polymer Science and Polyolefin (Polyethylene & Polypropylene) Engineering. Further, he is also well-versed in Chemical & Biomolecular Engineering, Bioengineering, Water Distribution System, Water Injection Treatment and Water

Treatment Technology. He is currently the Senior Professor of Chemical & Biomolecular Engineering in Georgia Institute of Technology, USA wherein he has designed numerous courses on various aspects of polymer science and chemical engineering that include Applied Molecular Modelling, Numerical Modelling of Process Engineering, and Chemical Processes using Molecular Modelling to characterize Polymer Behaviour and Methods for Technical Innovation.

Dr. Ludovice's research interests include structure-property relationships in polymer materials including a variety of polymers from basic vinyl polymers to high performance polymer and biological polymers. His researches have been funded by various industries and the United States National Science Foundation, the Department of Energy, the Whitaker Foundation and the Office of Naval Research. Further, he has gained his extensive experience through his prior challenging positions such as a Polymer Product Manager of Molecular Simulations Inc., a Senior Scientist for NASA – Ames Research Center (USA) and the IBM – Almaden Research Center (USA), a Research Associate for the Institut für Polymere at the Eidgenössische Technische Hochschule in Zürich, Switzerland and a Principal Investigator for 40 diverse international agencies.

Dr. Ludovice holds PhD and Bachelor degrees in Chemical Engineering from the Massachusetts Institute of Technology, USA and the University of Illinois, USA respectively. Further, he is an active member of the American Institute of Chemical Engineers (AIChE), Society of Plastics Engineers (SPE), Materials Research Society and the American Chemical Society. Moreover, he has published numerous books and papers circulated internationally and delivered technical presentations and seminars in several international conferences. He was also one of the inventors of the "Self-Expanding Intraluminal Composite Prosthesis" and the "Pore-Forming Agents to Enhance Transdermal Delivery of Biological Agents". Amongst all these achievements, he was honoured with various awards such as the "Outstanding PhD Thesis Award" by Georgia Institute of Technology, the "Outstanding Professor of the Year" by AIChE and the "Sherwin Williams Award in Polymer Science" by the American Chemical Society.

PE1057 - Page 4 of 9

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 6,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day I	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to PVC (Polyvinyl Chloride)</i> <i>History & Global Market Outlook • Types: Suspension, Emulsion, Mass, Bulk</i> <i>Polymerization • Structure-Property Relationships • Comparison with other</i> <i>Thermoplastics</i>
0930 - 0945	Break
0945 - 1030	Classification of PVC Grades Rigid (uPVC) versus Flexible (Plasticized PVC) • K-Value & Molecular Weight • General-Purpose versus Specialty Grades • Suspension versus Paste versus Copolymer Grades
1030 - 1130	Resin Manufacturing & Quality Parameters Polymerization Process & Reactor Types • Key Quality Metrics (Bulk Density, VCM Residue, Porosity) • Resin Particle Morphology & Flow Properties • Role of Additives in Compound Performance
1130 - 1215	Thermal, Mechanical & Rheological Properties Glass Transition & Decomposition Temperatures • Tensile Strength, Impact Resistance & Elongation • Rheology & Melt Viscosity • PVC Behavior Under Different Shear Rates
1215 – 1230	Break

PE1057 - Page 5 of 9

1230 - 1330	<i>Additive Systems for PVC</i> Heat Stabilizers (Ca/Zn, Pb, Sn Types) • Plasticizers (DOP, DOTP, Phthalate- Free) • Lubricants, Impact Modifiers, Fillers • Flame Retardants, Pigments & UV Stabilizers
1330 - 1420	PVC Processing Techniques Overview Extrusion, Injection Molding, Blow Molding • Calendaring, Dip Molding, Slush Molding • Thermoforming & Compression Molding • Processing Equipment & Compounding Strategies
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830	Properties of Rigid PVC Grades
	Typical K-Value Range & Tensile Strength • Thermal Stability & Rigidity •
	UV Resistance & Weatherability • Fire Resistance Characteristics
	PVC for Pipes & Fittings
0830 - 0930	Pressure & Non-Pressure Pipe Grades • Specification Standards (ASTM, ISO,
0850 - 0950	EN) • Formulation for Impact & Hydrostatic Performance • Common Defects
	& Troubleshooting
0930 - 0945	Break
	Window Profiles, Siding & Building Profiles
0945 - 1100	Gloss, Color Stability & Outdoor Durability • Formulation for Co-Extrusion &
0945 - 1100	Mono-Layer Profiles • Weathering Tests & Impact Modification • Profiles for
	Doors, Windows & Cladding
	Rigid PVC in Bottles & Containers
1100 – 1215	Blow Molding Grades (Clarity, Impact Resistance) • Processing Window &
1100 - 1215	Mold Design • Food-Contact Compliance • Use in Pharma & Agrochemical
	Packaging
1215 – 1230	Break
	Sheets, Films & Thermoforming
1230 – 1330	<i>Rigid PVC Sheets for Signage & Construction • Multi-Layer Sheet Extrusion •</i>
1230 - 1330	Vacuum Forming & Pressure Forming • Compatibility with other Polymers
	(e.g., PETG)
	Rigid Foam Boards & WPC
1330 - 1420	PVC/Wood Composites & Cellular Foam • Blowing Agents & Process Control
1550 - 1420	• Lightweight versus Structural Grades • Applications in Signage, Interiors,
	Furniture
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

PE1057 - Page 6 of 9

Day 3

0730 - 0830	Flexible PVC Properties & Applications
	Role of Plasticizers in Flexibility • Shore A Hardness & Elongation Range •
	Rebound Resilience & Tear Strength • Low-Temperature Performance
	Wire & Cable Insulation & Jacketing
0020 0020	Electrical & Thermal Properties • Flame Retardancy & Oil Resistance •
0830 – 0930	Compounding for Insulation versus Sheathing • Certifications (UL, VDE,
	RoHS, REACH)
0930 - 0945	Break
	PVC for Medical & Pharmaceutical Use
0045 1100	Biocompatibility & USP Class VI Compliance • DEHP & Non-DEHP
0945 – 1100	Alternatives • Clarity, Weldability & Sterilization Compatibility • Uses: Blood
	Bags, IV Tubes, Catheters
	Flexible PVC in Flooring & Wall Coverings
1100 – 1215	Anti-Slip, Abrasion Resistance & Printability • Foam-Backed versus Solid
1100 - 1215	Flooring Formulations • Indoor Air Quality & VOC Considerations •
	Calendaring versus Extrusion Methods
1215 – 1230	Break
	Artificial Leather & Automotive Interiors
1230 – 1330	Paste-Grade PVC for Coated Fabrics • Surface Aesthetics & Durability • Foam
	Lamination & Backing Materials • Colorfastness & Scratch Resistance
	Inflatable, Sealing & Dipping Applications
1330 – 1420	Slush Molding for Toys & Dashboards • Dip Coating for Gloves & Grips •
1550 - 1420	Airtight & Waterproof Sealants • Formulations for Flexible Tanks & Inflatable
	Structures
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today & Advise Them of the Topics to be Discussed</i>
	Tomorrow
1430	Lunch & End of Day Three

Day 4

Duy 4	
0730 - 0830	CPVC (Chlorinated PVC) Grades
	Chlorination Level & Thermal Resistance • CPVC for Hot Water Pipes & Fire
	Sprinkler Systems • Chemical Resistance & Installation Techniques • CPVC
	Compounding Differences From PVC
0830 - 0930	High-Impact & Weatherable PVC Grades
	Acrylic & MBS Impact Modifiers • Formulation for Cold Climate Installations
	• UV Stabilizers & Pigment Systems • Outdoor Weathering Tests (QUV,
	Xenon Arc)
0930 - 0945	Break
0945 - 1100	Transparent & High Clarity PVC
	Optical Properties & Resin Selection • Calendared versus Extruded Clarity
	Films • Impact of Plasticizers & Stabilizers • Applications: Blister Packs,
	Display Films
1100 - 1215	PVC/NBR & PVC/PU Blends
	Oil & Fuel Resistance • Flexibility at Low & High Temperatures • Processing
	Considerations in Blending • Use in Industrial Hoses & Seals

PE1057 - Page 7 of 9

1215 – 1230	Break	
1230 - 1330	<i>Flame Retardant & Smoke Suppressed PVC</i> Formulation with ATH, Sb2O3, Phosphates • Low-Smoke Zero-Halogen (LSZH) Trends • Fire Performance Testing (LOI, UL94, Cone Calorimeter) • Application in Public Infrastructure & Tunnels	
1330 – 1420	Sustainable PVC & Recycling Techniques Mechanical Recycling of Rigid & Flexible PVC • Contamination & Sorting Challenges • Bio-Based PVC & Non-Phthalate Developments • Lifecycle Assessment (LCA) & Circular Economy	
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow	
1430	Lunch & End of Day Four	

Day 5

Day J	
0730 – 0830	PVC Testing & Quality Control
	Tensile, Impact & Elongation Testing (ASTM D638) • Shore Hardness &
	Gelation Tests • Thermal Analysis (DSC, Vicat Softening) • Weathering,
	Aging & Color Stability Testing
	Regulatory & Environmental Compliance
0830 - 0930	REACH, RoHS, FDA, NSF Standards • Heavy Metal & Phthalate
	Restrictions • Food Contact & Potable Water Certifications • Environmental
	Product Declarations (EPDs)
0930 - 0945	Break
	Packaging Industry Applications
0945 – 1100	Flexible Films for Shrink Wrap & Stretch Wrap • Rigid PVC for Blister Packs
0943 - 1100	& Clamshells • Barrier Properties & Sealing Behavior • Form-Fill-Seal (FFS)
	Equipment Compatibility
	Automotive & Transportation Applications
1100 – 1215	PVC for Door Seals, Dashboards, Underbody Coatings • Noise, Vibration &
1100 - 1213	Harshness (NVH) Considerations • Fuel System Compatibility • Co-Extruded
	Trim & Edge Protection
1215 – 1230	Break
	Building & Infrastructure Applications
1230 - 1330	Conduit, Trunking & Cable Ducts • Rain Gutters, Fencing, Wall Panels •
1230 - 1330	<i>Compliance with Local & International Codes • Weatherable Formulations for</i>
	Exterior Use
	Course Conclusion
1330 – 1345	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1345 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

PE1057 - Page 8 of 9

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

PE1057 - Page 9 of 9

