

COURSE OVERVIEW PE1049 Cement Kiln Process & Operation

<u>Course Title</u> Cement Kiln Process & Operation

Course Date/Venue

- Session 1: May 25-29, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
- Session 2: July 06-10, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

(30 PDHs)

Course Reference PE1049

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Cement Kiln Process & Operation. It covers the cement production process and the role of the kiln in clinker formation; the kiln system components and configuration, raw material and clinker chemistry and clinker formation reactions; the kiln process flow and heat transfer and essential kiln parameters and monitoring; the preheater and precalciner operation and burning zone control; and the fuel types and combustion management, the kiln pressure and draft control.

Further, the course will also discuss the kiln coating and ring formation and optimize kiln throughput and efficiency; the kiln process control systems, the PID control loops and automation basics, DCS interface, HMI interpretation, interlocks, alarms and control system tuning; the kiln monitoring and diagnostic tools, kiln alignment and mechanical stability and common kiln operational problems; the cooler operation and clinker handling, the preventive and predictive maintenance; and the kiln emissions and environmental impact, NOx and SOx control strategies and dust and particulate management.

PE1049 - Page 1 of 8

PE1049-05-25|Rev.00|27 April 2025

During this interactive course, participants will learn the energy consumption and optimization, the thermal energy consumption and waste heat recovery systems (WHR); the types of alternative fuels and raw materials (AFR) and calorific value considerations; and the kiln operation in low-carbon cement manufacturing, perform indicators and benchmarking and team collaboration and operator best practices.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on cement kiln process and operation
- Discuss the cement production process and the role of the kiln in clinker formation
- Identify kiln system components and configuration, raw material and clinker chemistry and clinker formation reactions
- Explain kiln process flow and heat transfer and essential kiln parameters and monitoring
- Apply preheater and precalciner operation and burning zone control
- Identify fuel types and combustion management and employ kiln pressure and draft control
- Recognize kiln coating and ring formation and optimize kiln throughput and efficiency
- Apply kiln process control systems covering PID control loops and automation basics, DCS interface, HMI interpretation, interlocks, alarms and control system tunina
- Identify kiln monitoring and diagnostic tools, kiln alignment and mechanical stability and common kiln operational problems
- Employ cooler operation and clinker handling and discuss preventive and predictive maintenance
- Identify kiln emissions and environmental impact, NOx and SOx control strategies and dust and particulate management
- Explain energy consumption and optimization including thermal energy consumption and waste heat recovery systems (WHR)
- Recognize the types of alternative fuels and raw materials (AFR) and calorific value considerations
- Apply kiln operation in low-carbon cement manufacturing, perform indicators and benchmarking and team collaboration and operator best practices

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

PE1049 - Page 2 of 8

Who Should Attend

This course provides an overview of all significant aspects and considerations of cement kiln process and operation for process engineers, kiln operators, production supervisors/managers, maintenance engineers/technicians, quality control personnel, project engineers and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training IA@EI (IACET - USA) PROVIDER

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in gualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE1049 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is a Senior Engineer with 30 years of extensive industrial experience within the Oil & Gas, Refinery and Petrochemical industries. His wide expertise includes Control Valve Maintenance & Testing, Advanced Operational Skills, Operations & Maintenance for Gas Processing Plant, Oil & Gas Processing Facilities Operations, Applied Natural Gas Processing, Dehydration & Advanced Rotating Equipment, Gas Processing & Compression, Process Equipment Design & Troubleshooting, Process Plant Optimization & Continuous

Improvement, Production Process Optimization, Cement Kiln Process & Operation, Cement Production, Cement Quality & Chemistry, Preheater & Precalciner Operation, Kiln System Components, Operations Planning Optimization, Process Equipment Design, Process Plant Performance & Efficiency, Process Integration & Optimization, Root Cause Analysis (RCA) Methods, Root Cause Analysis, Process Equipment & Piping System, Rotating Equipment Reliability Optimization & Continuous Improvement, Material Cataloguing, Mechanical & **Rotating Equipment** Troubleshooting & Maintenance, **Rotating Equipment** for Process Industry, Rotating Machinery Best Practices, Centrifugal Pumps Operation, Positive Displacement Pumps Repair, Pump Maintenance & Troubleshooting, Heat Exchanger Maintenance & Repair, Heat Exchanger Inspection & Troubleshooting, Fin-fan Coolers, Fundamentals of Engineering Drawings, Codes & Standards, P&ID Reading Interpretation & Developing, Boiler Design, Boiler Inspection & Maintenance, Boiler Operation & Control, Boiler Troubleshooting & Inspection, Boiler Instrumentation & Control, Steam Boiler Maintenance, Boiler & Steam Generation System, Boiler Failure Analysis & Prevention, Boiler Burner Management, Boiler Water Treatment Technology, Machinery Failure Analysis, Preventive & Predictive Maintenance, Condition Monitoring, Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Reliability Centred Maintenance (RCM), Risk Base Inspection (RBI), Metallurgical Failure Analysis, Corrosion Failure Analysis, Steam Generation, Steam Turbines, Power Generator Plants, Gas Turbines, Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, Heat Transfer, Coolers, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearings, Couplings, Clutches and Gears. Further, he is also versed in Wastewater Treatment Technology, Networking System, Water Network Design, Industrial Water Treatment in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes **Design** and **Sizing** of all **Waste Water Treatment Plant Associated Equipment** such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the Project Manager, Plant Manager, Area Manager, Maintenance Manager, Engineering Manager, Technical Consultant & Trainer, Head of Capital Projects, Refractory Specialist, Construction Superintendent, Maintenance Supervisor, Project Engineer, Process Engineer, Maintenance Engineer and Thermal Design Engineer of various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a Registered Professional Engineer in the USA and Greece and has Master's and Bachelor's degree in Mechanical Engineering with Honours from the Purdue University and Southern Illinois University (USA) respectively as well as an MBA from the University of Phoenix Further. he is a Certified Instructor/Trainer, Certified Internal (USA). Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM), a member of the American Society of Heating, Refrigeration and Air-Conditioning Engineers and delivered various trainings, courses, seminars and workshops worldwide.

PE1049 - Page 4 of 8

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav	1
Duy	

0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Cement Manufacturing
	Overview of the Cement Production Process • Role of the Kiln in Clinker
	Formation • Kiln Types: Dry, Semi-Dry, Wet & Modern Preheater/Precalciner
	Importance of Kiln Operation in Overall Plant Efficiency
0930 - 0945	Break
	Kiln System Components & Configuration
09/5 1030	Preheater & Precalciner Functions • Rotary Kiln Shell, Internals & Refractory
0545 - 1050	Lining • Clinker Cooler (Grate, Rotary, Planetary) • Kiln Drive &
	Transmission Systems
	Raw Material & Clinker Chemistry
1030 - 1130	Key Oxides: CaO, SiO ₂ , Al_2O_3 , $Fe_2O_3 \bullet$ Lime Saturation Factor (LSF), Silica
1050 - 1150	Ratio (SR), Alumina Ratio (AR) • Free Lime & Burnability Index •
	<i>Mineralogical Phases in Clinker (C</i> $_3S$ <i>, C</i> $_2S$ <i>, C</i> $_3A$ <i>, C</i> $_4AF$ <i>)</i>
1130 - 1215	Clinker Formation Reactions
	Decarbonation Zone & Calcination Reactions • Solid-Phase Reactions in the
	Kiln • Liquid Phase Formation & Sintering • Cooling & Clinker Mineral
	Stabilization
1215 - 1230	Break
1230 - 1330	Kiln Process Flow & Heat Transfer
	Material & Gas Flow Direction • Heat Transfer Mechanisms (Conduction,
	Convection, Radiation) • Residence Time & Heat Balance • Importance of
	Temperature Profiles

PE1049 - Page 5 of 8

	Essential Kiln Parameters & Monitoring
1220 1420	Kiln Feed Rate & Rotation Speed • Inlet/Outlet Temperature Profiles •
1550 - 1420	Secondary & Tertiary Air Control • Oxygen, CO, NOx Levels in the Kiln
	System
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1450	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One
s Dav 2	
	Preheater & Precalciner Operation
0720 0820	Cyclone Operation & Separation Efficiency • Calciner Combustion &
0730 - 0830	Residence Time • Temperature Control in Riser Duct • Managing Incomplete
	Calcination
	Burning Zone Control
0830 - 0930	Flame Shape & Stability • Temperature Measurement & Coating Behavior •
	Clinker Color & Nodulization • Identification of Hot & Cold Spots
0930 - 0945	Break
	Fuel Types & Combustion Management
0945 - 1100	Primary Fuels: Coal, Petcoke, Natural Gas • Alternative Fuels: RDF, Biomass,
0010 1100	Tire-Derived Fuels • Combustion Air Control & Burner Tuning • Flame
	Momentum & Fuel Burnout
	Kiln Pressure & Draft Control
1100 – 1215	ID Fan & Induced Draft Balance • Sealing Systems & False Air Control •
	Impact on Combustion & Emissions • Using Draft Indicators & Automation
1215 - 1230	Break
	Kiln Coating & Ring Formation
1230 - 1330	Desired Coating Thickness & Characteristics • Causes of Ring Formation:
	Sulphate, Alkali, High Iron • Detecting Early Signs of Coating/Ring Issues •
	Strategies for Removal & Prevention
1220 1420	Optimization of Kiin Inroughput & Efficiency
1330 - 1420	Clinker Quality mercus Kile Load • Persharehing Acquiret Post Practices
	Cunker Quality versus Kun Loud • Denchmarking Against Best Practices
1420 - 1430	Lising this Course Operation the Instructor(c) will Brief Darticinants about the
	Tonics that more Discussed Today and Advise Them of the Tonics to be
	Discussed Tomorrozu
1/130	Lunch & Fud of Day Two
1430	

Day 3

0730 – 0830	<i>Kiln Process Control Systems</i> PID Control Loops & Automation Basics • DCS Interface & HMI Interpretation • Interlocks & Alarms • Control System Tuning
	The presence of the model of the second of t
0830 - 0930	Kiln Monitoring & Diagnostic Tools
	Kiln Scanner & Shell Temperature Analysis • Gas Analyzers & Burner
	Cameras • Vibration & Alionment Sensors • AI & Predictive Analytics
	Applications
0930 - 0945	Break
	Kiln Alignment & Mechanical Stability
0945 – 1100	Kiln Axis & Shell Run-Out • Roller Adjustment & Load Distribution •
	Ovality & Kiln Shell Expansion • Alignment Inspection Procedures

PE1049 - Page 6 of 8

1100 - 1215	Common Kiln Operational Problems
	Red River in Cooler • Snowman & Nose Ring Formation
1215 – 1230	Break
1230 - 1330	Cooler Operation & Clinker Handling
	<i>Grate Speed & Airflow Control • Heat Recovery Efficiency • Clinker Discharge</i>
	Temperature • Refractory Wear & Clinker Crusher Issues
1330 - 1420	Preventive & Predictive Maintenance
	Routine Kiln Inspections • Refractory Condition Monitoring • Gear, Tire &
	Roller Maintenance • Predictive Techniques (Thermography, Ultrasound, Oil
	Analysis)
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

0720 0820	Kiln Emissions & Environmental Impact
	Key Pollutants: CO ₂ , NOx, SO ₂ , CO, Dust • Regulatory Standards &
0730 - 0830	<i>Compliance Monitoring</i> • <i>Kiln Contribution to Plant Emissions</i> • <i>Continuous</i>
	Emission Monitoring Systems (CEMS)
0830 - 0930	NOx & SOx Control Strategies
	Combustion Modification • Low-NOx Burners & Staged Combustion • Raw
	Material Management • Use of Additives & Bypass Systems
0930 - 0945	Break
0945 - 1100	Dust & Particulate Management
	<i>ESPs & Baghouse Filters • Material Handling & Fugitive Dust Control • Dust</i>
	Return Systems & Cyclone Efficiency • Stack Emission Troubleshooting
	Energy Consumption & Optimization
1100 1215	Thermal Energy Consumption (kcal/kg clinker) • Electrical Energy Savings in
1100 - 1213	Drives & Fans • Waste Heat Recovery Systems (WHR) • Use of AFR to
	Reduce Specific Heat Consumption
1215 - 1230	Break
	Alternative Fuels & Raw Materials (AFR)
1230 - 1330	Types of AFR & Calorific Value Considerations • Feeding Systems & Kiln
1250 - 1550	Compatibility • AFR Impact on Emissions & Clinker Quality • Health &
	Safety Considerations
1330 - 1420	Kiln Operation in Low-Carbon Cement Manufacturing
	Challenges with SCM-Rich Clinker • Belite-Rich & Low-Lime Clinker Burning
	• Adjusting Combustion & Cooling Profiles • Kiln's Role in Achieving
	Sustainability Targets
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

PE1049 - Page 7 of 8

Day 5

0730 - 0830	Kiln Operation Case Study 1: Clinker Quality Deviation
	Scenario Introduction • Investigation Steps & Parameter Analysis • Root
	Cause Identification • Corrective Action Planning
0830 - 0930	Kiln Operation Case Study 2: Ring Formation Event
	Kiln Condition Before, During, After Ring Formation • Process Data Review •
	Response Strategy & Results • Preventive Practices Learned
0930 - 0945	Break
0945 - 1100	Troubleshooting Workshop
	Common Scenarios: Temperature Drop, High CO, False Air • Group
	Discussion & Diagnostic Thinking • Developing Corrective & Preventive
	Actions • Control Logic Validation
	Performance Indicators & Benchmarking
1100 1000	Key KPIs: Clinker Production, Thermal/Electrical Consumption • Availability,
1100 - 1250	Run Factor & Kiln Uptime • Comparison with Industry Benchmarks •
	Continuous Improvement Planning
1230 – 1245	Break
1245 - 1345	Team Collaboration & Operator Best Practices
	Shift Handover & Communication Protocols • Daily Reporting Formats &
	Operational Logs • Operator Responsibility in Kiln Protection • Training &
	Mentoring of New Operators
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

<u>Practical Sessions</u> This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE1049 - Page 8 of 8

PE1049-05-25|Rev.00|27 April 2025

