COURSE OVERVIEW DE0766 Advance Drilling Optimization for HPHT Wells

Course Title

Advance Drilling Optimization for HPHT Wells

Course Reference

DE0766

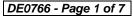
Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	May 04-08, 2025	Meeting Plus 9, City Centre Rotana, Doha Qatar
2	July 06-10, 2025	Safir Meeting Room, Divan Istanbul, Turkey
3	September 14-18, 2025	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
4	November 09-13, 2025	Olivine Meeting Room, Fairmont Nile City, Cairo, Egypt

Course Description



This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of HPHT drilling design and operational practices. It covers the HPHT drilling including its differences, essentials, project objectives, challenges associated and standards and practices; the HPHT geological hazards, risk assessment on HPHT reservoirs geology in the HPHT environment and risk assessment; the aspect of HPHT reservoirs and well architecture specificities of HPHT wells; the casing design specific to HPHT; the OCTG choice, OCTG connector choice and surface equipment for HPHT wells; and the well equipment covering liner, wellheads and casing hangers.

Further, the course will also discuss the annulus management systems, subsea HPHT specificities and downhole equipment challenges; the casing wear, wellhead growth and fluids and cement aspects of HT environments; the kick tolerance modeling, hydraulic modeling in HPHT operations, logging, in-field drilling and rig inspection program; the equipment specific to HPHT, hydrates and HPHT checklists; and the HPHT procedures, HPHT coring, wireline logging, wellbore breathing, well control and ballooning.

During this highly interactive course, participants will learn the gas expansion, mud weight management, well control procedures and pressure drilling management; the fingerprinting connections, swab and surge, compressibility test, drain back/flow volume and contingency planning; and the well control emergencies and HPHT completions.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on HPHT drilling design and operational practices
- Carryout well planning and operational design for HTHP wells
- Discuss HPHT drilling including its differences, essentials, project aims, objectives, challenges and associated standards and practices
- Recognize HPHT geological hazards and carryout risk assessment on HPHT reservoirs geology in the HPHT environment including HPHT geological hazards and risk assessment
- Explain the aspect of HPHT reservoirs and well architecture specificities of HPHT wells
- Illustrate the casing design specific to HPHT as well as discuss OCTG choice, OCTG connector choice and surface equipment for HPHT wells
- Identify well equipment covering liner, wellheads and casing hangers
- Recognize annulus management systems, subsea HPHT specificities and downhole equipment challenges
- Discuss casing wear, wellhead growth and fluids and cement aspects of HT environments
- Illustrate kick tolerance modeling, hydraulic modeling in HPHT operations, logging, infield drilling and rig inspection program
- Recognize equipment specific to HPHT, hydrates and HPHT checklists
- Employ HPHT procedures, HPHT coring, wireline logging, wellbore breathing, well control and ballooning
- Identify gas expansion and apply mud weight management, well control procedures and pressure drilling management
- Carryout fingerprinting connections, swab and surge, compressibility test, drain back/flow volume and contingency planning
- Apply well control emergencies and HPHT completions

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course covers systematic techniques on HPHT drilling design and operational practices for drilling engineers, drilling supervisors and drilling superintendents.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Shehab Al-Hamoud, MSc, BSc, is a Senior Petroleum Engineer with over 25 years of offshore and onshore experience in the Oil & Gas, Refinery & Petrochemical industries. His wide expertise includes Advanced Production Logging, Well Testing & Software Application, Wellhead & X-mass Tree, Completion Design, Well Integrity, Drilling & Workover Operations, Completion Design & Fishing, Well Control, Stuck Pipe Principle & Practical, Advanced Coiled Tubing Operations & Fishing, Rigless Solutions, Advanced

Wire Line & Fishing, Well Completion Design & Performance for Production Engineering, SCSSV Problems, Well Testing Operations, Well Intervention (IWCFR), Workovers & Completions, Petroleum Risk & Decision Analysis, Well Testing Analysis, Engineering & Simulation, Reservoir Monitoring, Artificial Lift Design, Gas Operations, Oil & Gas Production, Well Cementing, Production Optimization, Production Logging and Project Evaluation & Economic Analysis. He is currently the Well Service & Field Operations Engineer/Supervisor wherein he is in-charge of rigless package operations, kill well, coiled tubing operations, acidizing and fracturing, slick line operations, well completion and exploratory well testing operations, safety and emergency exercises on site.

During his career life, Mr. Shehab has gained his practical and field experience through his various significant positions and dedication as the **Field Operations Engineer**, **Well Services Engineer**, **Completion & Well Service Supervisor**, **Rigless Package Supervisor**, **Completion & Workover Supervisor**, **Completion & Workover Supervisor**, **Well Site Supervisor** and **Senior Technical Train/Lecturer** from various international companies such as the AFPC, ADCO and SPC just to name a few.

Mr. Shehab has a **Bachelor's** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** a **Certified Petroleum Engineer**, held certificates on **IADC/ IWCF Well Control** and **H2S Training** and has delivered numerous trainings, courses, seminars, workshops and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.	
Istanbul	US\$ 8,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.	
Dubai	US\$ 8,000 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.	
Cairo	US\$ 8,000 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.	

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	Introduction to HPHT Drilling
0900 - 0930	Defining the HPHT Environment
0930 - 0945	Break
0945 - 1030	HPHT Differences & Essentials
1030 - 1115	HPHT Projects Aims & Objectives
1115 – 1200	HPHT Challenges & Associated Standards & Practices
1200 - 1230	Geology in the HPHT Environment
1230 - 1245	Break
1245 - 1330	HPHT Geological Hazards & Risk Assessment
1330 - 1420	HPHT Reservoirs
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

		
0730 - 0800	Aspects of HPHT Reservoirs (Effect of Depletion, Geomechanics)	
1000 - 1100	Well Architecture Specificities of HPHT Wells	
0930 - 0945	Break	
0945 - 1030	Casing Design Specific to HPHT (Thermal Simulations/Introduction to	
0943 - 1030	Limit-state & Reliability Based Design/Survival Loads)	
1030 - 1115	OCTG Choice (Material Grade, SSC, Qualification)	
1115 – 1200	OCTG Connector Choice (Test & Qualification)	
1200 - 1230	Surface Equipment for HPHT Wells	
1230 – 1245	Break	
1245 - 1330	Well Equipment (Liner, Wellheads, Casing Hangers)	
1330 – 1420	Annulus Management Systems (N2 Cushion, Burst Discs, Crushable	
1550 - 1420	Foams)	
1420 - 1430	Recap	
1430	Lunch & End of Day Two	

Day 3

0730 - 0830	Subsea HPHT Specificities (Wellhead Fatigue, X-Mas Tree Choice, APB)
0830 - 0930	Downhole Equipment Challenges
0930 - 0945	Break
0945 - 1030	Casing Wear (Modeling, Measurement, Remedial)
1030 - 1115	Wellhead Growth (Modeling & Impacts, Heat Island Effect)
1115 – 1200	Fluids & Cement Aspects of HT Environments
1200 – 1230	Kick Tolerance Modeling (Dispersed Modeling w/ Drill Bench or
1200 - 1250	Equivalent, Limitations of Single Bubble in HPHT)
1230 - 1245	Break
1245 - 1330	Hydraulic Modeling in HPHT Operations
1330 - 1420	Logging (Current HT Limitations on MWD Tooling)
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

Day 4	
0730 - 0830	In-field Drilling (Depletion & Stress Caging)
0830 - 0930	Rig Inspection Program for HPHT Operations
0930 - 0945	Break
0945 – 1030	Equipment Specific to HPHT (Mud Coolers, Kick Assembly, Early-Kick-
0943 - 1030	Detection)
1030 - 1115	Hydrates (Formation Mechanisms, Prevention)
1115 – 1200	HPHT Checklists
1200 – 1230	HPHT Procedures (Pit Management & Discipline, Breaking Circulation,
1200 - 1230	Connections, Flow Checks, Tripping Procedures, Pump Out of Hole)
1230 - 1245	Break
1245 - 1330	HPHT Coring & Wireline Logging
1330 – 1420	Wellbore Breathing (Breathing vs. Kick, Loss-gain Scenarios,
1550 - 1420	Supercharging Mechanisms, Fracture)
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

Day 3		
0730 - 0800	Well Control & Ballooning	
0800 - 0830	Gas Expansion	
0830 - 0930	Mud Weight Management	
0930 - 0945	Break	
0945 - 1030	Well Control Procedures	
1030 - 1115	Managed Pressure Drilling	
1115 – 1200	Fingerprinting Connections, Swab & Surge, Compressibility Test, Drain	
1113 - 1200	Back/Flow Volume	
1200 - 1230	Contingency Planning	
1230 - 1245	Break	
1245 - 1315	Well Control Emergencies	
1315 - 1345	HPHT Completions	
1345 - 1400	Course Conclusion	
1400 - 1415	POST-TEST	
1415 – 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

