

COURSE OVERVIEW PE1054 Advanced Cement Technology: Chemistry, Manufacturing & Testing

Course Title

Advanced Cement Technology: Chemistry, Manufacturing & Testing

Course Date/Venue

Session 1: June 29-July 03, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE Session 2: December 07-11, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

CEL

Course Reference

PE1054

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

Further, the course will also discuss the sulfur, alkali, chloride balancing, SO₃ control and gypsum optimization, process monitoring and control systems; the cement hydration mechanisms, setting and hardening reactions; measuring heat evolution and thermal gradients in mass concrete; the durability and chemical resistance and blended cement performance and hydration; and the superplasticizers and retarders interaction and cement sulfate balance with mixtures.

PE1054 - Page 1 of 9

PE1054-06-25|Rev.00|28 April 2025

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Advanced Cement Technology: Chemistry, Manufacturing & Testing. It covers the cement chemistry covering major chemical constituents, cement chemistry notation, role of minor oxides and effect of trace elements on clinker and cement; the clinker mineralogy, phase development, chemical moduli, raw mix design, solid state and clinker formation reaction as well as raw material selection, chemical impacts and blended cement chemistry; and the pyroprocessing optimization, clinker cooling, heat recovery, grinding systems and energy efficiency.

During this interactive course, participants will learn the chemical analysis and quality monitoring, mineralogical analysis, physical testing of cement, process and product capability analysis and testing of blended and specialty cements; the laboratory quality assurance and accreditation, low-carbon cement technologies and advanced cement blending techniques; the digitalization and industry 4.0 in cement plants; the CO₂ emissions tracking and benchmarking, alternative fuel impact on clinker and emissions; and the cement plant waste valorization and environmental product declaration.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an advanced knowledge on cement technology: chemistry, manufacturing and testing
- Discuss cement chemistry covering major chemical constituents, cement chemistry notation, role of minor oxides and effect of trace elements on clinker and cement
- Explain clinker mineralogy, phase development, chemical moduli, raw mix design, solid state and clinker formation reaction as well as raw material selection, chemical impacts and blended cement chemistry
- Carryout pyroprocessing optimization, clinker cooling, heat recovery, grinding systems and energy efficiency
- Explain sulfur, alkali, chloride balancing, SO₃ control and gypsum optimization as well as process monitoring and control systems
- Recognize cement hydration mechanisms, setting and hardening reactions as well as measure heat evolution and thermal gradients in mass concrete
- Illustrate durability and chemical resistance and blended cement performance and hydration
- Define superplasticizers and retarders interaction and cement sulfate balance with mixtures
- Carryout chemical analysis and guality monitoring, mineralogical analysis, physical testing of cement, process and product capability analysis and test of blended and specialty cements
- Discuss laboratory quality assurance and accreditation, low-carbon cement technologies and advanced cement blending techniques
- Explore digitalization and industry 4.0 in cement plants and define CO₂ emissions tracking and benchmarking, alternative fuel impact on clinker and emissions as well as cement plant waste valorization and environmental product declaration

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

PE1054 - Page 2 of 9

Who Should Attend

This course provides an overview of all significant aspects and considerations of process engineering clinker and cement grinding for

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• *** • BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED
 The International Accreditors for Continuing Education and Training
 (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE1054 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. John Petrus, PhD, MSc, BSc, is a Senior Process & Petroleum Engineer with over 30 years of onshore & offshore experience within the Oil & Gas, Refinery and Petroleum industries. His wide experience covers in the areas of Gas Sweetening Process at Upstream Oil & Gas, De-Sulfurization Technology, Process Troubleshooting, Distillation Towers, Fundamentals of Distillation for Engineers, Vacuum Distillation. Distillation Column Operation & Control. Oil Movement Storage & Troubleshooting, Process Equipment Design, Applied Process Process Plant Engineering Elements, Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations

Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR). Further he is also well versed in Formation Damage & Acid Stimulation, Production Technology & Engineering, Well Completions, Well Logs, Well Stimulation & Production Logging, Well Completion Design & Operation, Well Surveillance, Well Testing, Well Stimulation & Control and Workover Planning, Completions & Workover, Hole Cleaning & Logging, Servicing and Work-Over Operations, Wellhead Operations, Maintenance & Testing, Petrophysics/Interpretation of Well Composite, Reservoir & Tubing Performance, Practical Reservoir Engineering, Clastic Exploration & Sedimentology, Carbonate Reservoir Characterization & Reservoir Modeling, Seismic Interpretation, Mapping & Reservoir Modelling, Reservoir Geology, Integrating Geoscience into Carbonate Reservoir Management, Faulted & Fractured Reservoirs, Fractured Hydrocarbon Reservoirs, Analyses, Characterisation & Modelling of Fractured Reservoirs & Prospects, Fracture Reservoir Modeling Using Petrel, Reservoir Engineering Applied Research, Artificial Lift, Artificial Lift System Selection & Design, Electrical Submersible Pumps (ESP), Enhance Oil Recovery (EOR), Hydraulic Fracturing, Sand Control Techniques, Perforating Methods & Design, Perforating Operations, Petroleum Exploration & Production, Hydrocarbon Exploration & Production, Exploration & Production, Play Assessment & Prospect Evaluation, Formation Evaluation, Petroleum Engineering Practices, Petroleum Hydrogeology & Hydrodynamics, Project Uncertainty, Decision Analysis & Risk Management, Decision Analysis & Uncertainty Management, Exploration & Development Geology, Sedimentology & Sequence Stratigraphy, Structural Interpretation in Exploration & Development, Petrel Geology, Geomodeling, Structural Geology, Applied Structural Geology in Hydrocarbon Exploration, Petrophysics and Geology of the Oil & Gas Field.. Further, he is also well-versed in seismic interpretation, mapping & reservoir modelling tools like Petrel software, LandMark, Seisworks, Geoframe, Zmap and has extensive knowledge in MSDos, Unix, AutoCAD, MAP, Overlay, Quicksurf, 3DStudio, Esri ArcGIS, Visual Lisp, Fortran-77 and Clipper. Moreover, he is a world expert in analysis and modelling of fractured prospects and reservoirs and a specialist and developer of fracture modelling software tools such as FPDM, FMX and DMX Protocols.

During his career life, Dr. Petrus held significant positions and dedication as the Executive Director, Senior Geoscience Advisor, Exploration Manager, Project Manager, Manager, Process Engineer, Mechanical Engineer, Maintenance Engineer, Chief Geologist, Chief of Exploration, Chief of Geoscience, Senior Geosciences Engineer, Senior Explorationist, Senior Geologist, Geologist, Senior Geoscientist, Geomodeller, Geoscientist, CPR Editor, Resources Auditor, Project Leader, Technical Leader, Team Leader, Scientific Researcher and Senior Instructor/Trainer from various international companies and universities such as the Dragon Oil Holding Plc., ENOC, MENA, ENI Group of Companies, Ocre Geoscience Services (OGS), Burren RPL, Ministry of Oil-Iraq, Eni Corporate University, Standford University, European Universities, European Research Institutes, NorskHydro Oil Company, Oil E&P Companies, just to name a few.

Dr. Petrus has a PhD in Geology and Tectonophysics and Master and Bachelor degrees in Earth Sciences from the Utrecht University, The Netherlands. Further, he is a Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier by the Institute of Leadership & Management (ILM), a Secretary and Treasurer of Board of Directors of Multicultural Centre, Association Steunfonds SSH/SSR and Founding Member of Sfera Association. He has further published several scientific publications, journals, research papers and books and delivered numerous trainings, workshops, courses, seminars and conferences internationally.

PE1054 - Page 4 of 9

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures
20% Practical Workshops & Work Presentations
30% Hands-on Practical Exercises & Case Studies
20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Fundamentals of Cement Chemistry Major chemical constituents (CaO, SiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃) • Cement Chemistry Notation (C, S, A, F, H) • Role of Minor Oxides (MgO, SO ₃ , Alkalis) • Effect of Trace Elements on Clinker and Cement
0930 - 0945	Break
0945 – 1030	<i>Clinker Mineralogy & Phase Development</i> <i>Clinker Phases: C₃S, C₂S, C₃A, C₄AF</i> • <i>Alite versus Belite: Reactivity and</i> <i>Strength Contributions</i> • <i>Role of Cooling Rate on Phase Stability</i> • <i>Effects of</i> <i>Sulfate, Alkali and Minor Constituents</i>
1030 - 1130	<i>Chemical Moduli & Raw Mix Design</i> Lime Saturation Factor (LSF) • Silica Ratio (SR) and Alumina Ratio (AR) • Burnability Index and Free Lime Control • Raw Mix Optimization for Kiln Performance
1130 – 1215	<i>Solid-State & Clinker Formation Reactions</i> <i>Raw Mix Reactions through Temperature Zones</i> • <i>Decarbonation and Solid-Solid Reactions</i> • <i>Liquid Phase Generation and Sintering Behavior</i> • <i>Clinker Crystallization Mechanisms</i>
1215 - 1230	Break
Autority (

PE1054 - Page 5 of 9 PE1054-06-25|Rev.00|28 April 2025

1230 - 1330	<i>Raw Material Selection & Chemical Impacts</i> Variability in Limestone, Clay, Shale, Iron Ore • Influence of Impurities (Chloride, Phosphate, Potassium) • Correction Materials and Quality Assurance • Sampling and Blending Strategies
1330 – 1420	Blended Cement Chemistry Pozzolanic, Latent Hydraulic and Filler Effects • Interaction with Clinker Phases • Impact on Hydration Kinetics and Durability • Chemical Compatibility with Admixtures
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Dav 2

Day 2	
0730 - 0830	Pyroprocessing Optimization
	Thermal Profile of Preheater, Precalciner and Kiln • Kiln Burning Zone
	Stability • Fuel Types and Their Combustion Chemistry • Coating and Ring
	Formation Chemistry
0830 - 0930	Clinker Cooling & Heat Recovery
	Grate and Rotary Cooler Systems • Role of Cooling Rate in Phase Stabilization
	• Heat Recovery and Secondary Air Systems • Cooler Performance and
	Clinker Reactivity
0930 - 0945	Break
	Grinding Systems & Energy Efficiency
	Ball Mill versus Vertical Roller Mill (VRM) Design • Grinding Aids and
0945 - 1100	Their Chemical Function • Cement Fineness and Hydration Rate Relationship
	•
	Energy Optimization Strategies
	Sulfur, Alkali & Chloride Balancing
1100 – 1215	Kiln Volatile Cycle Chemistry • Kiln Inlet and Riser Buildup Analysis •
1100 - 1215	Alkali Bypass System Design and Impact • Managing sulfur and Chloride
	Inputs
1215 – 1230	Break
	SO3 Control & Gypsum Optimization
1230 – 1330	Types of gypsum: dihydrate, hemihydrate, anhydrite • Cement Setting
1250 - 1550	Regulation • Impact of Under- and Over-Sulfation • Measurement and
	<i>Quality Control of SO</i> ³
	Process Monitoring & Control Systems
1330 – 1420	Role of real-time Analyzers (PGNAA, Cross-Belt XRF) • SCADA and
1550 - 1420	Advanced Control Systems • Feedback and Feed Forward Controls •
	Integration of Quality Data with Process Control
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

PE1054 - Page 6 of 9

<i>Cement Hydration Mechanisms</i> Hydration of C_3S and C_2S (C–S–H formation) • Role of C_3A in Ettringite and
<i>Monosulfate Formation</i> • <i>Hydration of C</i> ₄ <i>AF and Role of Iron</i> • <i>Kinetics of Heat Release and Strength Gain</i>
Setting & Hardening Reactions
Initial and Final Setting: Contributing Reactions • False Set versus Flash Set
Mechanisms • Role of Retarders and Accelerators • Influence of Cement
Fineness and Admixtures
Break
Heat of Hydration & Thermal Management
Measuring Heat Evolution (Calorimetry Methods) • Thermal Gradients in
Mass Concrete • Cement Chemistry and Thermal Performance • Strategies for
Low-Heat Cement Formulations
Durability a Chemical Resistance
Sulfate attack and SRC Formulation • Alkali-Silica Reaction (ASR) Chemistry
and Mitigation • Carbonation and Steel Reinforcement Protection • Chloride
Penetration and Binding
Break
Blended Cement Performance & Hydration
Slag, Fly Ash, Silica Fume: Reaction Products • Contribution to Later-Age
Strength • Pozzolanic Activity Index (PAI) • Effect on Permeability and
Durability
Admixtures & Compatibility
Superplasticizers and Retarders Interaction • Admixture-Cement
Compatibility Tests • Cement Sulfate Balance with Admixtures • SCM-
Admixture Synergy and Risks
Recap
Using this Course Overview, the Instructor(s) will Brief Participants about the
Topics that were Discussed Today and Advise Them of the Topics to be
Discussed Tomorrow
Lunch & End of Day Three

Dav 4

Day 4	
0730 – 0830	Chemical Analysis & Quality Monitoring
	XRF for Major Oxides – Calibration and Drift Correction • Wet chemical
	Methods for SO ₃ , Alkalis, Chloride • LOI and Free Lime Measurements •
	Sample Preparation: Fusion and Pressed Pellets
0830 - 0930	Mineralogical Analysis
	XRD and Rietveld Refinement for Phase Quantification • Clinker Microscopy
	(Optical and SEM) • SEM/EDS for Cement Hydration Products •
	Identifying Clinker Defects and Secondary Phases
0930 - 0945	Break
	Physical Testing of Cement
0945 – 1100	Blaine Fineness and Particle Size Distribution • Setting time (Vicat
	apparatus) • Soundness Tests (Le Chatelier, Autoclave) • Compressive
	Strength Development (Mortar Cubes)
1100 - 1215	Process & Product Capability Analysis
	Standard Deviation and Variability Control • Cp, Cpk and Statistical Control
	Limits • Control Charts for Strength and SO_3 • Interpreting Test Data for
	Process Feedback
1215 – 1230	Break
C (R) FOA	

PE1054 - Page 7 of 9 PE1054-06-25|Rev.00|28 April 2025

1230 - 1330	<i>Testing of Blended & Specialty Cements</i> <i>Strength, Setting, and Heat Evolution</i> • <i>Durability testing (sulfate resistance,</i>
	ASR Expansion) • Water Demand and Flowability Tests • Chemical
	Analysis of SCMs
1330 – 1420	Laboratory Quality Assurance & Accreditation
	Lab Management and ISO 17025 Requirements • Calibration and Verification
	of Lab Instruments • Round-Robin Testing and Inter-Laboratory Comparisons
	• SOPs and Training for Consistency
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Dav 5

<i>Low-Carbon Cement Technologies</i> <i>Reduction of Clinker Factor</i> • <i>Limestone Calcined Clay Cement (LC³)</i> • <i>Belite-</i>
Rich and Sulfoaluminate Cements • Carbon Capture and Utilization (CCU)
Advanced Cement Blending Techniques
Ternary Blends and Performance optimization • Intergrinding versus
Interblending: Chemical Effects • Recycled Materials and Industrial
Byproducts • Regulatory and Standard Compliance
Break
Digitalization & Industry 4.0 in Cement Plants
Predictive Analytics and AI in Quality Control • Use of Digital Twins for
Process Optimization • Sensor Integration and Smart Monitoring • Digital
Laboratory and LIMS Systems
Case Studies in Cement Optimization
Clinker Chemistry Adjustment for Cost Reduction • Kiln Performance Tuning
Through Raw Mix Changes • Grinding aid Dosage versus Cement
Performance • Troubleshooting Setting Or Strength Inconsistencies
Break
Sustainability Metrics & Circular Economy
CO ₂ Emissions Tracking and Benchmarking • Alternative Fuel Impact on
Clinker and Emissions • Cement Plant Waste Valorization • Environmental
Product Declarations (EPDs)
Course Conclusion
Using this Course Overview, the Instructor(s) will Brief Participants about the
Course Topics that were Covered During the Course
POST-TEST
Presentation of Course Certificates
Lunch & End of Course



PE1054 - Page 8 of 9

<u>Practical Sessions</u> This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE1054 - Page 9 of 9

