

COURSE OVERVIEW EE1131 MV ACB & HV Technology

Course Title MV ACB & HV Technology

Course Date/Venue

June 16-20, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

30 PDHs)

Course Reference EE1131

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of MV ACB & HV Technology. It covers the electrical power systems, medium voltage air circuit breakers, high voltage (HV) technology and switchgear components and functions; the IEC and IEEE standards for MV and HV equipment, testing certification requirements. and environmental and safety regulations and compliance and auditing processes; the safety protocols in MV and HV systems, construction and components of MV ACB, operating principles and protection schemes using MV ACB; and the routine inspection procedures, contact resistance measurement, insulation resistance testing and timing and functional tests.

Further, the course will also discuss the common issues and troubleshooting including HV circuit breakers, SF_6 circuit breakers, vacuum circuit breakers and oil and air-blast circuit breakers; the switchgear configurations and standards and testing for HV equipment; the design considerations for HV systems and protection and control in HV systems; and the maintenance strategies for HV equipment and safety practices in HV operations.

EE1131 - Page 1 of 11

During this interactive course, participants will learn the environmental impact and sustainability covering SF_6 gas management and alternatives, recycling and disposal of HV equipment, energy efficiency measures and regulatory compliance and reporting; the integration of MV and HV systems, testing and commissioning procedures and digitalization and smart grid integration; the emerging technologies in MV and HV systems covering vacuum interrupters for HV applications, solid-state circuit breakers, eco-friendly insulating gases and advanced diagnostics and analytics; and the regulatory and compliance updates covering recent changes in standards, impact on equipment design and operation, compliance strategies and future regulatory trends.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an in-depth knowledge on medium voltage air circuit breakers and high voltage technology
- Discuss electrical power systems, medium voltage air circuit breakers, high voltage (HV) technology and switchgear components and functions
- Review IEC and IEEE standards for MV and HV equipment, testing and certification requirements, environmental and safety regulations and compliance and auditing processes
- Recognize safety protocols in MV and HV systems, construction and components of MV ACB, operating principles and protection schemes using MV ACB
- Apply routine inspection procedures, contact resistance measurement, insulation resistance testing and timing and functional tests
- Identify common issues and troubleshooting including HV circuit breakers, SF₆ circuit breakers, vacuum circuit breakers and oil and air-blast circuit breakers
- Carryout switchgear configurations and discuss standards and testing for HV equipment
- Explain design considerations for HV systems and protection and control in HV systems as well as apply maintenance strategies for HV equipment and safety practices in HV operations
- Discuss environmental impact and sustainability covering SF₆ gas management and alternatives, recycling and disposal of HV equipment, energy efficiency measures and regulatory compliance and reporting
- Apply integration of MV and HV systems, testing and commissioning procedures and digitalization and smart grid integration
- Recognize the emerging technologies in MV and HV systems covering vacuum interrupters for HV applications, solid-state circuit breakers, eco-friendly insulating gases and advanced diagnostics and analytics
- Review regulatory and compliance updates covering recent changes in standards, impact on equipment design and operation, compliance strategies and future regulatory trends

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

EE1131 - Page 2 of 11

Who Should Attend

This course provides an overview of all significant aspects and considerations of MV ACB & HV technology for electrical engineers, maintenance engineers & technicians, substation operators & technicians, project engineers / managers, commissioning engineers, supervisors & team leaders, health & safety professionals, procurement / asset management personnel, utility & industrial plant engineers and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

EE1131 - Page 3 of 11

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Ken Steel is a Senior Electrical & Instrumentation Engineer with over **30 years** of extensive experience. His expertise widely covers Electrical Motors Testing, Heat Tracing & Insulation Installation & Testing, HV Terminations, High & Low Voltages on Overhead Cranes, HV/MV Cable Splicing, Cable & Over Head Power Line, HV/MV Switchgear, HV Cable Design, Medium & High Voltage Equipment, High Voltage Circuit Breaker Inspection & Repair, High Voltage Power System, HV Equipment

Inspection & Maintenance, HV Switchgear Operation & Maintenance, Resin / Heat Shrink & Cold Shrink Joints, HV/LV Equipment, LV & HV Electrical System, Cable Splicing & Termination, High Voltage Electrical Safety, LV, MV & HV Cable Installations & Properties, LV Substation, MV & LV Cable, UPS Systems, MV & LV Direct on Line Motor Drives, MV & LV VSD Motor Drives, MV & LV Soft Starter Motor Drives, LV Two Speed Motor Drives, Underground Transformer Oil Containment Tank, Electrical & Instrumentation Construction Installation, 1500KW, 1000KW, 1752KW Diesel Power Plant Installation, 110KV Overhead Line, 110KV Outdoor Switchgear. 110KV/10KV 6500KVA Transformer, Transformer Substation, 1600KVA 10KV/0.4KV & 2 Off 1000KVA Diesel Generators, 1600KVA 10KV/0.4KV & 1650KVA Diesel Generator. 110KV/35KV/10KV Substation. 110KV/10KV Transformers, 110KV & 2 Off 6KV Overhead Lines, 34.5KV, 13.8KV, 4.16KV & 480V Switchgear, 4.16KV & 480V MCC, Transformers & Motor Drives Substations, Diesel Driven Generators, Overhead Cranes, Overhead Cranes & HVAC Units, AC & DC Drives, Data Logger, Electrical, Instrumentation & Mechanical Installation Maintenance, Slab Mills, Pre Heat Ovens, Hydraulic Shears, Stamping Machine, Gearboxes, Rollers, Pumps, Valves, Electro Magnets & Pump House Operation, Boilers Construction And Commissioning, Valve Calibration & Testing, Level Gauges, Pressure & Flow Transmitters Installation & Calibration, Pressure & Leak Testing of Boilers, Leak Testing, SMP, Elect, I&C, F&G, HVAC & Utility Services, Nitrogen Leak Test Operations, Steam Blowing Activities, SMP, Elect, I&C, F&G, HVAC & Utility Services, PTW Issue (PA/AC), Installation & Mechanical Piping and Hydro Testing & Leak Testing of Lines Installation.

During Mr. Steel's career life, he has gained his practical experience through several significant positions and dedication as the 3GP PBF & Boilers SC Commission Support, SC Site Execution Superintendent, E&I Construction Superintendent, High Voltage Construction Supervisor, Control & Power Construction Supervisor, Electrical & Instrumentation Supervisor, Electrical Technician, Construction Support Electrical Engineer, E&I Engineer, Electrical/Instrumentation Site Supervisor, Q.A/Q.C Inspector, Electrical/ Instrumentation Technician, Maintenance Fitter Instrumentation Technician, Millwright, Apprentice Millwright and Senior Instructor/Lecturer for Tengiz Chevron Oil Kazakhstan, Al Jubail Saudi Arabia, Escravos Delta state Nigeria, Lurgi S.A, SuD Chemie Sasol Catalysts, J C Groenewalds Construction (LTA), Tycon (Goodyear S.A.), Dragline Construction and Iscor Vanderbijlpark.

Mr. Steel has a Diploma in Electronics Mechanic. Further, he is a Certified Instructor/Trainer and delivered numerous trainings, courses, workshops, seminars and conferences internationally.

EE1131 - Page 4 of 11

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

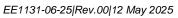
Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	<i>Monday, 16th of June 2025</i>
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Electrical Power Systems
	Overview of Power Generation, Transmission and Distribution • Voltage
0850 - 0950	Classifications: LV, MV, HV, EHV • Importance of Switchgear in Power
	Systems • Basic Components: Transformers, Circuit Breakers, Isolators
0930 - 0945	Break
	Medium Voltage Air Circuit Breakers (MV ACB)
0945 – 1030	Definition and Applications • Operating Principles • Comparison with Other
	Breaker Types • Advantages and Limitations
	High Voltage (HV) Technology Overview
1030 - 1130	Definition and Voltage Ranges • Applications in Power Systems • Challenges
	in HV Systems • Safety Considerations
	Switchgear Components & Functions
1130 – 1215	Circuit Breakers • Disconnectors and Isolators • Earthing Switches •
	Instrument Transformers
1215 – 1230	Break
1230 - 1330	Standards & Regulations
	IEC and IEEE Standards for MV and HV Equipment • Testing and
	Certification Requirements • Environmental and Safety Regulations •
	Compliance and Auditing Processes

EE1131 - Page 5 of 11

1330 - 1420	Safety Protocols in MV & HV Systems Personal Protective Equipment (PPE) • Lockout-Tagout (LOTO) Procedures • Arc Flash Hazards and Mitigation • Emergency Response Planning
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One


Day 2:	Tuesday, 17 th of June 2025
	Construction & Components of MVACB
0730 - 0830	Main Contacts and Arc Chutes • Operating Mechanisms • Trip Units and
	Protection Relays • Enclosures and Insulation Materials
	Operating Principles of MV ACB
0830 - 0930	Arc Formation and Extinction • Current Interruption Process • Mechanical
	and Electrical Interlocks • Manual and Automatic Operations
0930 - 0945	Break
	Protection Schemes Using MV ACB
0945 – 1100	Overcurrent Protection • Short-Circuit Protection • Earth Fault Protection •
	Coordination with Upstream and Downstream Devices
	Maintenance & Testing of MVACB
1100 – 1215	Routine Inspection Procedures • Contact Resistance Measurement • Insulation
	<i>Resistance Testing</i> • <i>Timing and Functional Tests</i>
1215 – 1230	Break
	Common Issues & Troubleshooting
1230 – 1330	Contact Wear and Erosion • Mechanical Linkage Failures • Trip Unit
	Malfunctions • Overheating and Insulation Degradation
	Case Studies & Practical Examples
1330 – 1420	Analysis of MV ACB Failures • Lessons Learned from Real Incidents • Best
	Practices in Maintenance • Improvement Strategies
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Wednesday, 18 th of June 2025
	Overview of HV Circuit Breakers
0730 - 0830	<i>Types: SF</i> ₆ , <i>Vacuum, Oil, Air-Blast</i> • <i>Applications and Selection Criteria</i> •
	Comparison of Technologies • Environmental Considerations
0830 - 0930	SF ₆ Circuit Breakers
	<i>Properties of SF₆ Gas</i> • <i>Arc Quenching Mechanism</i> • <i>Design and Construction</i>
	Handling and Environmental Impact
0930 - 0945	Break
0945 - 1100	Vacuum Circuit Breakers
	<i>Operating Principles</i> • <i>Advantages Over Other Types</i> • <i>Design Considerations</i>
	Applications in HV Systems
	Oil & Air-Blast Circuit Breakers
1100 – 1215	Historical Development • Operating Mechanisms • Maintenance
	Requirements • Current Usage and Limitations

EE1131 - Page 6 of 11

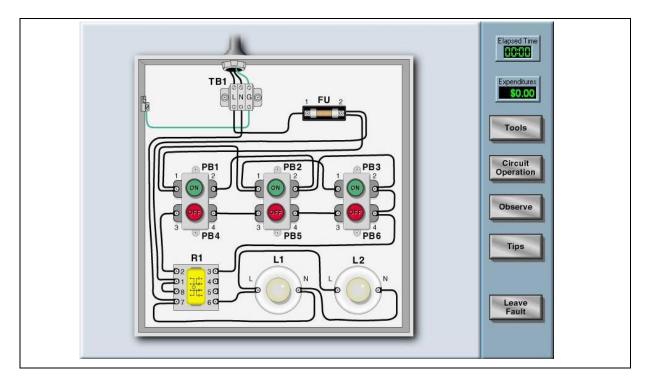
AWS

1215 - 1230	Break
1230 - 1330	Switchgear Configurations Air-Insulated Switchgear (AIS) • Gas-Insulated Switchgear (GIS) • Hybrid Switchgear Systems • Selection Based on Application
1330 - 1420	<i>Standards & Testing for HV Equipment</i> <i>IEC 62271 Series • Type and Routine Tests • High-Voltage Testing Procedures</i> • <i>Certification Processes</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Thursday, 19 th of June 2025
	Design Considerations for HV Systems
0730 - 0830	Insulation Coordination • Creepage and Clearance Distances • System
	Grounding Methods • Surge Protection Devices
	Protection & Control in HV Systems
0830 - 0930	Differential Protection Schemes • Distance Protection • Breaker Failure
	Protection • Automation and Control Systems
0930 - 0945	Break
	Maintenance Strategies for HV Equipment
0945 - 1100	Condition-Based Maintenance • Predictive Maintenance Techniques • Use of
	Diagnostic Tools • Maintenance Scheduling and Planning
	Safety Practices in HV Operations
1100 - 1215	Risk Assessment Procedures • Safe Work Practices • Emergency Response
	Protocols • Training and Competency Requirements
1215 - 1230	Break
	Environmental Impact & Sustainability
1000 1000	SF ₆ Gas Management and Alternatives • Recycling and Disposal of HV
1230 – 1330	Equipment • Energy Efficiency Measures • Regulatory Compliance and
	Reporting
	Case Studies in HV System Failures
1330 - 1420	Analysis of Major Incidents • Root Cause Analysis Techniques • Preventive
	Measures • Lessons Learned and Best Practices
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5:	Friday, 20 th of June 2025
	Integration of MV & HV Systems
0730 – 0830	Interfacing Between MV and HV Equipment • Coordination of Protection
	Schemes • Communication Protocols • System Stability Considerations
0830 - 0930	Testing & Commissioning Procedures
	Pre-Commissioning Checks • Functional and Performance Testing • Site
	Acceptance Tests • Documentation and Reporting
0930 - 0945	Break

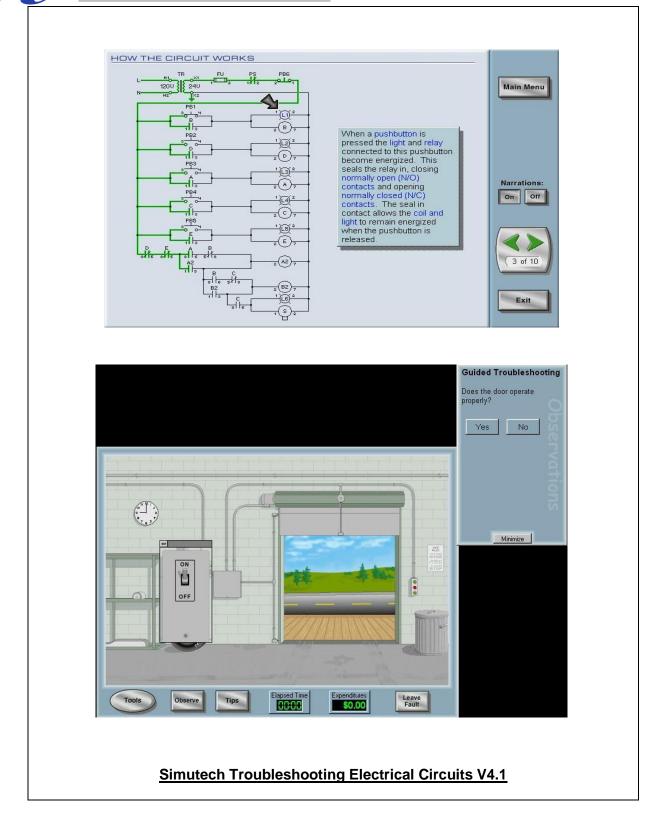
EE1131 - Page 7 of 11 EE1131-06-25|Rev.00|12 May 2025



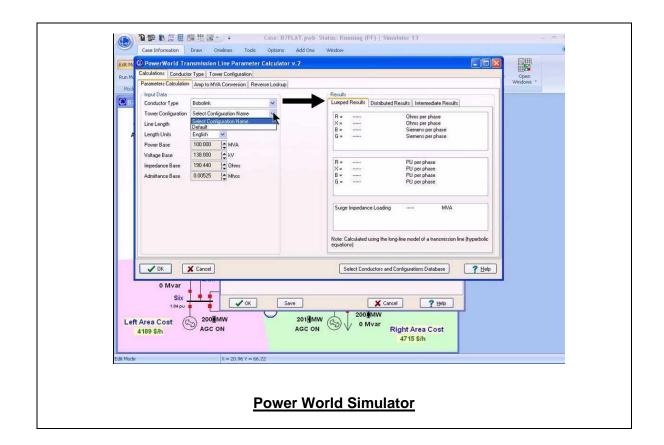
	Digitalization & Smart Grid Integration
0945 – 1100	Intelligent Electronic Devices (IEDs) • SCADA Systems • Remote Monitoring
	and Control • Cybersecurity Considerations
	Emerging Technologies in MV & HV Systems
1100 – 1215	Vacuum Interrupters for HV Applications • Solid-State Circuit Breakers •
	Eco-Friendly Insulating Gases • Advanced Diagnostics and Analytics
1215 – 1230	Break
	Regulatory & Compliance Updates
1230 – 1345	Recent Changes in Standards • Impact on Equipment Design and Operation •
	Compliance Strategies • Future Regulatory Trends
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about a
	Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

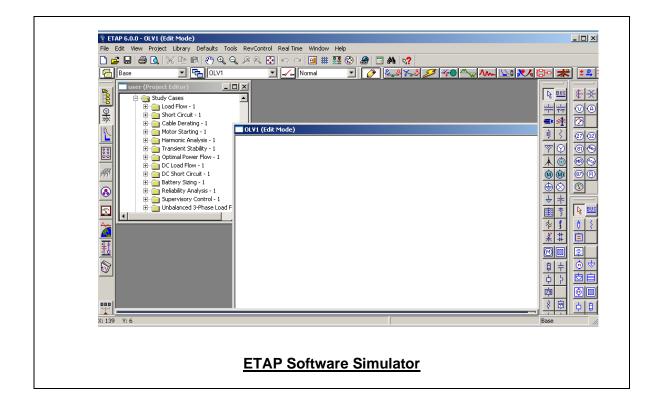
Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Simutech Troubleshooting Electrical Circuits V4.1", Power World" and "ETAP software".



EE1131 - Page 8 of 11





EE1131 - Page 9 of 11

EE1131 - Page 10 of 11

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE1131 - Page 11 of 11

