

COURSE OVERVIEW PE1016 Al in Natural Gas Treatment

<u>Course Title</u> Al in Natural Gas Treatment

Course Date/Venue

Session 1: May 25-29, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai UAE Session 2: November 17-21, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference PE1016

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Artificial Intelligence in Natural Gas Treatment. It covers the fundamentals of AI in natural gas processing and AI for gas feedstock characterization and quality prediction; the AI in gas separation and fractionation optimization; the AI for process control, real-time monitoring and acid gas removal; the AI for maintenance predictive of gas processing equipment, heat exchanger and gas cooler efficiency optimization; the AI in gas dehydration and water removal optimization, pump and compressor health monitoring; and the AI for pipeline and storage tank monitoring.

Further, the course will also discuss the AI for gas sweetening and acid gas processing, natural gas liquefaction (LNG) optimization, mercury removal and trace contaminant detection; the AI for sulfur recovery and flue gas optimization including NGL (natural gas liquids) processing; the AI for gas processing safety and risk management; and the AI for environmental compliance and emission monitoring.

PE1016- Page 1 of 9

During this interactive course, participants will learn the AI-driven real-time gas plant simulation models, machine learning for process optimization in digital twins and AI-powered predictive analytics for plant performance monitoring; the AI in advanced control systems and process automation, smart gas plant management and AI-driven decision making; the future AI trends in gas processing and LNG production; and the AI for AI-driven predictive analytics in gas treatment, reducing operational costs and increasing efficiency.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on artificial intelligence in natural gas treatment
- Discuss the fundamentals of AI in natural gas processing and apply AI for gas feedstock characterization and quality prediction
- Carryout AI in gas separation and fractionation optimization, AI for process control and real-time monitoring and acid gas removal
- Employ AI for predictive maintenance of gas processing equipment, heat exchanger and gas cooler efficiency optimization
- Apply AI in gas dehydration and water removal optimization, pump and compressor health monitoring and pipeline and storage tank monitoring
- Illustrate AI for gas sweetening and acid gas processing, natural gas liquefaction (LNG) optimization, mercury removal and trace contaminant detection
- Carryout AI for sulfur recovery and flue gas optimization including NGL (natural gas liquids) processing
- Employ AI for gas processing safety and risk management, environmental compliance and emission monitoring
- Describe AI-driven real-time gas plant simulation models, machine learning for process optimization in digital twins and AI-powered predictive analytics for plant performance monitoring
- Implement AI in advanced control systems and process automation, smart gas plant management and AI-driven decision making
- Discuss the future AI trends in gas processing and LNG production and apply AI for AI-driven predictive analytics in gas treatment, reducing operational costs and increasing efficiency

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

PE1016- Page 2 of 9

Who Should Attend

This course provides an overview of all significant aspects and considerations of artificial intelligence in natural gas treatment for engineers and technical professionals, operations and maintenance personnel, data and AI specialists in oil and gas, managers and decision-makers, researchers and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

- ****** * **BAC**
- British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE1016- Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Hany Ghazal, BSc, is a Senior Process Engineer with over 35 years of experience within the Oil & Gas, Hydrocarbon and Petrochemical industries. His expertise widely covers in the areas of Desalination & Mixed Bed, Absorption & Stripping Columns Operation, Mass Transfer, Gas Absorption, Tray Column & Packed Column Absorbers, Acid Gas Removal Operation & Troubleshooting, Ion Exchange, Demineralization, Resin Testing, Deaeration, Process Plant Operations, Process

Plant Troubleshooting & Engineering Problem Solving, Safety & Pollution Control. Water Injection, Corrosion Monitoring & Corrosion Mitigation, Drilling, Maintenance, Production, Process, Equipment Maintenance, Engineering Drawing Screening, Surface Production Facilities, Infrastructure Integrity Assurance, Emergency Response, Safety Awareness, Advanced Safety Auditing, HAZOP, Integrity Management Rolling Plan, Gas Wells Production, Reservoir Management, Marine Services, Production, Pumping, Transportation, Processing, Storage, Shipping, Facilities Change Process, Training & Implementation, Capital & Expense Budgets, Managing Expenditures, General Performance, Tendering Process, Prepare Bid Packages, Technical & Commercial Evaluation, Tendering Process, Training Course Implementation, Documents, Production Daily Reports and Business Plan.

During his career life, Mr. Ghazal has gained his practical and field experience through his various significant positions and dedication as the **Training Instructor** & Consultant, Chairman & Managing Director, Operation General Manager & Board Member, Field Operation General & Manager, Facilities Assistance General Manager, Environment & Corrosion Department Head and Operations Engineer (Water Injection Plants) for Cairo University and Britch University, Joint ventures companies in the Egyptian oil & Gas sector, Natural gas production Company in The Egyptian Oil & Gas Sector Established and Ras Shukeir Oil Fields (GUPCO).

Mr. Hany has a Bachelor's degree of Chemical Engineering. Further, he is a Certified Instructor/Trainer and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

PE1016- Page 4 of 9

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Fundamentals of AI in Natural Gas Processing What is Artificial Intelligence (AI)? • Role of AI in Gas Processing & Treatment • AI versus Traditional Gas Treatment Techniques • Key AI Technologies (Machine Learning, Deep Learning, IoT, Digital Twins)
0930 - 0945	Break
0945 - 1030	<i>AI for Gas Feedstock Characterization & Quality Prediction</i> <i>AI-Based Natural Gas Composition Analysis</i> • <i>Machine Learning for</i> <i>Predicting Gas Quality Variations</i> • <i>AI-Driven Forecasting of Gas Impurities</i> <i>in Processing</i> • <i>AI-Assisted Gas Blending Optimization</i>
1030 - 1130	AI in Gas Separation & Fractionation Optimization AI-Powered Optimization of Gas Separation Units • Machine Learning for Cryogenic Distillation Efficiency • AI-Driven Yield Optimization for NGL Recovery • AI for Identifying Gas Separation Inefficiencies
1130 – 1215	<i>AI for Process Control & Real-Time Monitoring</i> <i>AI-Driven Predictive Process Control</i> • <i>Machine Learning for Detecting</i> <i>Anomalies in Gas Treatment</i> • <i>AI-Assisted Real-Time Process Optimization</i> • <i>AI-Powered Early Fault Detection in Gas Processing Units</i>
1215 – 1230	Break
1230 – 1330	<i>AI in Acid Gas Removal (CO₂ & H₂S Removal)</i> <i>AI-Based Optimization of Amine Treatment Processes</i> • <i>Machine Learning for</i> <i>Solvent Degradation Prediction</i> • <i>AI-Driven Mass Transfer Efficiency</i> <i>Improvement</i> • <i>AI-Powered Predictive Modeling for CO₂ & H₂S Levels</i>
1330 - 1420	Hands-On: AI-Based Data Analysis for Gas Processing Implementing AI Models for Natural Gas Composition Prediction • AI-Driven Process Monitoring in Gas Treatment Units • Machine Learning for Fraction Yield Optimization • AI-Powered Real-Time Gas Quality Monitoring
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

PE1016- Page 5 of 9 PE1016-05-25/Rev.00/20 March 2025

Day 2

0730 - 0830	AI for Predictive Maintenance of Gas Processing Equipment
	AI-Driven Predictive Failure Detection in Gas Plants • Machine Learning for
	Gas Compressor Health Monitoring • AI-Powered Maintenance Scheduling for
	Key Processing Units • Case Studies of AI-Driven Maintenance in Gas
	Treatment
0830 - 0930	AI for Heat Exchanger & Gas Cooler Efficiency Optimization
	AI-Assisted Heat Exchanger Fouling Prediction • Machine Learning for
	Optimizing Heat Recovery Units • AI-Powered Efficiency Monitoring in
	Thermal Processing • AI-Driven Predictive Maintenance for Gas Coolers
0930 - 0945	Break
	AI in Gas Dehydration & Water Removal Optimization
	AI-Driven Optimization of Glycol Dehydration Systems • Machine Learning
0945 - 1100	for Predicting Water Content in Gas Streams • AI-Powered Performance
	Monitoring of Molecular Sieves • AI-Assisted Predictive Maintenance for
	Dehydration Units
	AI for Pump & Compressor Health Monitoring
	Machine Learning for Gas Compressor Failure Prediction • AI-Powered
1100 – 1215	Vibration Analysis for Rotating Equipment • AI-Driven Performance
	Monitoring for Centrifugal & Reciprocating Compressors • AI-Assisted
	Predictive Maintenance for Gas Pumping Stations
1215 - 1230	Break
	AI for Pipeline & Storage Tank Monitoring
1000 1000	AI-Based Pipeline Leak Detection Systems • Machine Learning for Corrosion
1230 – 1330	and Crack Prediction • AI-Driven Real-Time Monitoring of Gas Storage Tanks
	• AI-Powered Inventory and Pressure Optimization
	Hands-On: AI for Predictive Maintenance & Equipment Health
	AI-Based Vibration Analysis for Gas Compressors • Machine Learning Models
1330 - 1420	for Pump Failure Prediction • AI-Driven Predictive Maintenance for Heat
	Exchangers • AI-Powered Real-Time Efficiency Monitoring in Gas Cooling
	Systems
	Recap
1420 – 1430	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two
	· · · · · ·

Day 3

0730 - 0830	AI for Gas Sweetening & Acid Gas Processing AI-Driven Optimization of Amine Circulation Rates • Machine Learning for Predicting CO ₂ Absorption Efficiency • AI-Powered Optimization of Solvent Regeneration Processes • AI-Assisted Predictive Modeling of Acid Gas Removal Performance
0830 – 0930	<i>AI in Natural Gas Liquefaction (LNG) Optimization</i> <i>AI-Based Optimization of Liquefaction Cycles</i> • <i>Machine Learning for</i> <i>Cryogenic Heat Exchanger Performance Prediction</i> • <i>AI-Driven Efficiency</i> <i>Improvements in LNG Production</i> • <i>AI-Powered Forecasting of LNG Output</i> <i>Based on Feed Gas Variability</i>
0930 - 0945	Break

PE1016- Page 6 of 9

	AI for Mercury Removal & Trace Contaminant Detection
0945 – 1100	AI-Driven Detection of Trace Elements in Natural Gas • Machine Learning for
	Predicting Mercury Adsorption Efficiency • AI-Powered Optimization of
	Activated Carbon Beds • AI-Assisted Monitoring of Contaminant
	Breakthrough Points
	AI for Sulfur Recovery & Flue Gas Optimization
	AI-Driven Optimization of Claus Sulfur Recovery Units • Machine Learning
1100 – 1215	for Tail Gas Treatment Efficiency Improvement • AI-Powered Emission
1100 - 1215	Control in Sulfur Recovery Processes • AI-Assisted Predictive Modeling of
	SO ₂ and NOx Emissions
1215 – 1230	Break
1215 - 1250	
	AI in NGL (Natural Gas Liquids) Processing
1000 1000	AI-Powered Separation Optimization in NGL Fractionation • Machine
1230 – 1330	Learning for Predicting C1-C5 Product Yields • AI-Driven Optimization of
	Refrigeration Cycles • AI-Assisted Predictive Modeling of Fractionation
	Column Performance
	Hands-On: AI-Based Process Optimization
1330 - 1420	AI-Driven Optimization of Amine-Based CO ₂ Removal • Machine Learning
1330 - 1420	for LNG Plant Efficiency Improvement • AI-Powered Predictive Analytics for
	Sulfur Recovery Units • AI-Assisted NGL Fractionation Yield Optimization
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 – 0830	AI for Gas Processing Safety & Risk Management AI-Driven Hazard Identification in Gas Plants • Machine Learning for Accident Prediction and Prevention • AI-Powered Real-Time Gas Detection and Leak Prevention • AI-Assisted Emergency Response and Safety Drills
0830 - 0930	AI for Environmental Compliance & Emission Monitoring AI-Driven Predictive Analytics for Methane Emissions • Machine Learning for Gas Flaring & Venting Optimization • AI-Powered Real-Time Monitoring of Volatile Organic Compounds (VOCs) • AI-Assisted Compliance with Environmental Regulations
0930 - 0945	Break
0945 – 1100	 AI-Powered Digital Twin Technology for Gas Plants What Is a Digital Twin? • AI-Driven Real-Time Gas Plant Simulation Models Machine Learning for Process Optimization in Digital Twins • AI-Powered Predictive Analytics for Plant Performance Monitoring
1100 – 1215	<i>AI in Advanced Control Systems & Process Automation</i> <i>AI-Assisted Distributed Control System (DCS) Optimization</i> • <i>Machine</i> <i>Learning for Advanced Process Control (APC)</i> • <i>AI-Driven Gas Treatment</i> <i>Automation Strategies</i> • <i>AI-Powered Decision Support Systems for Operators</i>
1215 – 1230	Break
1230 - 1330	 AI for Smart Gas Plant Management & AI-Driven Decision Making AI-Powered Real-Time Gas Processing Scheduling • Machine Learning for Gas Supply Chain Optimization • AI-Driven Pipeline Network Pressure Balancing • AI-Assisted Plant Profitability Forecasting

PE1016- Page 7 of 9

1330 - 1420	Hands-On: AI for Safety & Digital Twin Applications AI-Driven Risk Prediction Model for Gas Treatment Units • Machine Learning for Environmental Compliance Monitoring • AI-Powered Gas Plant Digital Twin Simulation • AI-Assisted Pipeline Network Optimization
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

	Future AI Trends in Gas Processing & LNG Production
0730 - 0930	AI-Powered Autonomous Gas Plant Operations • AI-Driven Real-Time
	Methane Leak Prevention • AI-Assisted Gas-to-Hydrogen Transformation
	Strategies • AI for Sustainability in Natural Gas Processing
0930 - 0945	Break
	AI for AI-Driven Predictive Analytics in Gas Treatment
0945 – 1100	AI-Powered Predictive Maintenance Evolution • AI-Driven Smart Gas
	Processing Operations • AI-Assisted Workforce Optimization in Gas Plants •
	AI-Powered Automated Process Troubleshooting
	AI for Reducing Operational Costs & Increasing Efficiency
1100 – 1215	AI-Driven Gas Processing Profitability Optimization • Machine Learning for
1100 - 1215	Cost Reduction in Gas Treatment • AI-Powered Energy Efficiency
	Improvement Models • AI-Assisted Fuel Gas Optimization Strategies
1215 – 1230	Break
	Hands-On: AI-Powered Gas Treatment Optimization Model
	AI-Based Process Control Simulation for Gas Plants • Machine Learning
1230 – 1345	Model for Predictive Maintenance Strategy • AI-Powered Emissions Tracking
	and Compliance System • AI-Assisted Gas Supply Chain and Logistics
	Optimization
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about a
	Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

PE1016- Page 8 of 9

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE1016- Page 9 of 9

