

COURSE OVERVIEW EE1139 Performance Analysis in the Power Sector

CEUS

(30 PDHs)

Course Title

Performance Analysis in the Power Sector

Course Date/Venue

August 04-08, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference EE1139

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-theart simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Performance Analysis in the Power Sector. It covers the key performance indicators (KPIs) in power systems and performance measurement frameworks; the power system components and impact on performance; the regulatory compliance and performance monitoring, data acquisition and integration in power systems; the data quality and validation techniques and statistical analysis for performance trends; the root cause analysis (RCA). reliability-centered maintenance (RCM), performance baselines and target setting; and the asset health and performance indexing, transformer and substation performance analysis and energy loss analysis in power networks.

During this interactive course, participants will learn the thermal performance and load profiles, economic performance indicators and system availability and downtime analysis; the SCADA and DMS systems for monitoring as well as advanced analytics and AI for power systems: the data visualization and performance dashboarding tools, integrated management systems (IPMS) and cloud and IoT in performance analytics; the performance reporting and communication, performance audits and gap analysis and performance improvement planning; and the reliability and performance benchmarking including riskbased performance management.

EE1139- Page 1 of 10

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on performance analysis in the power sector
- Carryout key performance indicators (KPIs) in power systems and performance measurement frameworks
- Recognize power system components and impact on performance including regulatory compliance and performance monitoring
- Apply data acquisition and integration in power systems, data quality and validation techniques and statistical analysis for performance trends
- Employ root cause analysis (RCA), reliability-centered maintenance (RCM), performance baselines and target setting
- Illustrate asset health and performance indexing, transformer and substation performance analysis and energy loss analysis in power networks
- Identify thermal performance and load profiles, economic performance indicators and system availability and downtime analysis
- Apply SCADA and DMS systems for monitoring as well as advanced analytics and AI for power systems
- Recognize data visualization and dashboarding tools, integrated performance management systems (IPMS) and cloud and IoT in performance analytics
- Carryout performance reporting and communication, performance audits and gap analysis and performance improvement planning
- Apply reliability and performance benchmarking including risk-based performance management

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of performance analysis in the power sector for power plant engineers and operators, electrical and mechanical engineers, performance analysts and energy managers, utility managers and supervisors, maintenance and reliability engineers, project engineers and technical consultants and other technical staff.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

EE1139- Page 2 of 10

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Haward's Certificates are accredited by the following international accreditation organizations:

•

* *

B

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED
ACCREDITED
PROVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

EE1139- Page 3 of 10

Course Instructor(s)

This course will be conducted by the following instructors. However, we have the right to change the course instructor prior to the course date and inform participants accordingly:

Mr. Pan Marave, PE, MSc, BEng, is a Senior Electrical & Instrumentation Engineer with over 30 years of extensive experience in Oil, Gas, Petrochemical, Refinery & Power industries. His expertise includes Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD); DCS, SCADA & PLC; Measurement (Flow, Temperature, Pressure); Process

Analyzers & Analytical Instrumentation; Process Control, Instrumentation & Safeguarding; Process Controller, Control Loop & Valve Tuning; Industrial Distribution Systems; Industrial Control & Control Systems, Power Systems Protection & Relaying; Earthing, Bonding, Grounding, Lightning & Surge Protection; Electric Power Substation & Systems; Electrical Engineering Principles; Motor Control Circuit; Electrical Fault Analysis; Electrical Networks & Distribution Cables; Circuit Breakers, Switchgears, Transformers, Hazardous Areas Classification and Detailed Engineering Drawings, Codes & Standards. Furthermore, he is also well-versed in Microprocessors Structure, Lead Auditor (ISO 9000:2000), ISO 9002, Quality Assurance, and Projects & Contracts Management.

Presently, Mr. Marave is the **Technical Advisor** of **Chamber of Industry & Commerce** in Greece. Prior to this, he gained his thorough practical experience through several positions as the **Technical Instructor**, **Engineering Manager**, **Electronics & Instruments Head**, **Electrical**, **Electronics & Instruments Maintenance Superintendent**, **Assistant General Technical Manager** and **Engineering Supervisor** of various international companies such as the **Alumil** Mylonas, **Athens Papermill**, **Astropol** and the **Science Technical Education**.

Mr. Marave is a Registered Professional Engineer and has Master's and Bachelor's degrees in Electrical Engineering from the Polytechnic Institute of New York and Pratt Institute of New York (USA) respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an active member of the Technical Chamber and the Institute of Electrical and Electronics Engineer (IEEE) in Greece. He has presented and delivered numerous international courses, conferences, trainings and workshops worldwide.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

EE1139- Page 4 of 10

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 04 th of August 2025
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Performance Analysis in Power Systems
0830 - 0930	Importance of Performance Monitoring • Objectives and Key Drivers • Roles
	and Responsibilities • Link to Regulatory and Operational KPIs
0930 - 0945	Break
	Key Performance Indicators (KPIs) in Power Systems
0945 - 1030	Technical KPIs (Availability, Reliability) • Financial KPIs (Cost/Unit, ROI) •
	Environmental KPIs (Emissions, Losses) • Safety & Compliance KPIs
	Performance Measurement Frameworks
1030 - 1130	Balanced Scorecard for Utilities • SMART KPIs • KPI Hierarchy: Corporate to
	Asset-Level • KPI Benchmarking and Standardization
	Overview of Power System Components & Impact on Performance
1130 – 1215	Transmission Lines • Substations and Transformers • Circuit Breakers and
	Switchgear • Protection and Control Systems
1215 – 1230	Break
	Regulatory Compliance & Performance Monitoring
1230 – 1330	Regulatory Authorities and Mandates • Grid Code and Reliability Standards •
	System Availability Reporting • Regulatory Penalties and Incentives
	Data Acquisition & Integration in Power Systems
1330 - 1420	SCADA and Telemetry Systems • Data Loggers and Historians • Asset
	Management Systems (AMS) • Cybersecurity and Data Integrity
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Tuesday, 05 th of August 2025
	Data Quality & Validation Techniques
0730 – 0830	Missing Data Handling • Outlier Detection • Data Cleansing Workflows •
	Sensor Calibration & Verification
	Statistical Analysis for Performance Trends
0830 - 0930	Descriptive Statistics • Time-Series Analysis • Regression & Correlation
	Methods • Trend Prediction Techniques
0930 - 0945	Break
	Root Cause Analysis (RCA) in Power Systems
0945 – 1100	RCA Tools: 5 Whys, Ishikawa • Common Causes of Underperformance • RCA
	Case Studies (Transformers, Cables) • Preventive Action Planning
	Reliability-Centered Maintenance (RCM) Principles
1100 – 1215	Failure Mode Effects Analysis (FMEA) • Condition Monitoring Data •
	Maintenance Strategy Optimization • Predictive Maintenance Applications
1215 - 1230	Break

EE1139- Page 5 of 10

1230 - 1330	Performance Baselines & Target Setting
	<i>Establishing Performance Benchmarks</i> • <i>Setting Realistic Improvement Targets</i>
	Scenario-Based Performance Planning Risk-Based Target Adjustments
1330 - 1420	Digital Twins & Simulation Tools
	Introduction to Digital Twins • Simulation Models for Grid Behavior •
	Performance Forecasting • Integration with Real-Time Data
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Wednesday, 06 th of August 2025
0730 - 0830	Asset Health & Performance Indexing
	Asset Health Indices (AHI) • Performance Degradation Models • Risk Ranking
	and Prioritization • Health Monitoring Dashboards
	Transformer & Substation Performance Analysis
0830 - 0930	Load and Temperature Profiles • Oil & Gas Analysis Metrics • Downtime
	Analysis • Condition versus Performance
0930 - 0945	Break
	Energy Loss Analysis in Power Networks
0945 – 1100	Technical versus Non-Technical Losses • Loss Modeling and Segmentation •
	Feeder-Level Analysis • Loss Minimization Strategies
	Thermal Performance & Load Profiles
1100 – 1215	Impact of Thermal Limits • Load Curve Analytics • Transformer Derating and
	Overloads • Thermal Imagery Interpretation
1215 – 1230	Break
	Economic Performance Indicators
1230 – 1330	Cost-Benefit Analysis of Upgrades • Economic Dispatch Analysis • Life-Cycle
	Costing (LCC) • ROI of Reliability Improvements
1330 - 1420	System Availability & Downtime Analysis
	MTTR, MTBF and Reliability Curves • Fault Logging and Event
	Classification • Downtime Root Cause Logs • Alarm Rationalization
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Thursday, 07 th of August 2025
	SCADA & DMS Systems for Monitoring
0730 - 0830	Real-Time Data Visualization • SCADA-Based Alarm Management • Event
	and Trend Reporting • DMS Integration Benefits
	Advanced Analytics & AI for Power Systems
0830 - 0930	Machine Learning Applications • Anomaly Detection Models • Forecasting
	with AI • Intelligent Alert Systems
0930 - 0945	Break
	Power System Simulation Tools Overview
0945 - 1100	DIgSILENT PowerFactory Basics • ETAP and PSS®E Functions • Transient
	& Steady-State Simulations • Grid Impact Studies

EE1139- Page 6 of 10

1100 - 1215	Data Visualization & Dashboarding Tools
	Power BI, Tableau and Excel for Dashboards • Interactive Visualization
	Methods • Custom Dashboards for KPIs • Real-Time versus Historical Views
1215 – 1230	Break
1230 - 1330	Integrated Performance Management Systems (IPMS)
	Features of IPMS • Interfacing with ERP, EAM Systems • Alarm &
	Performance Event Workflows • Change Management
1330 - 1420	Cloud & IoT in Performance Analytics
	Remote Asset Performance Monitoring • IoT Sensors and Edge Computing •
	Cloud Storage and Analytics Platforms • Data Latency and Cybersecurity
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5:	Friday, 08 th of August 2025
0730 - 0830	Performance Reporting & Communication
	Structured Reporting Templates • Executive Summaries and Dashboards •
	Frequency of Reporting (Daily, Monthly, Annual) • Action Tracking and
	Accountability
	Performance Audits & Gap Analysis
0830 - 0930	Audit Objectives and Scope • Audit Checklists and Methodology • Audit Trail
	and Evidence Gathering • Post-Audit Improvement Plans
0930 - 0945	Break
	Performance Audits & Gap Analysis
0945 - 1100	Audit Objectives and Scope • Audit Checklists and Methodology • Audit Trail
	and Evidence Gathering • Post-Audit Improvement Plans
	Reliability & Performance Benchmarking
1100 1215	Internal versus External Benchmarking • IEEE, CIGRE, IEC Standards
1100 - 1213	Comparison • Global Utility Performance Indicators • Lessons Learned
	Documentation
1215 – 1230	Break
1230 - 1345	Risk-Based Performance Management
	Identifying Critical Performance Risks • Quantifying Impact and Probability •
	Risk-Mitigation Prioritization • Linking Risk to KPI Review
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about a
	Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

EE1139- Page 7 of 10

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Simutech Troubleshooting Electrical Circuits V4.1", Power World" and "ETAP software".

EE1139- Page 9 of 10

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE1139- Page 10 of 10

