

COURSE OVERVIEW DE0835 Advanced Well Stimulation

Course Title

Advanced Well Stimulation

Course Date/Venue

November 17-21, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi. UAE

Course Reference

DE0835

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

Reservoir stimulation and artificial lift are the two main activities of the production engineer in the petroleum and related industries. The main purpose of stimulation is to enhance the property value by the faster delivery of the petroleum fluid and/or to increase ultimate economic recovery.

Matrix stimulation and hydraulic fracturing are intended to remedy, or even improve, the natural connection of the wellbore with the reservoir, which could delay the need for artificial lift.

Many wells that would otherwise be classified as dry holes have been made into profitable producers by fracture, acid or explosive stimulation treatments.

This training course discusses the various well stimulation treatments that are frequently used to stimulate old or poorly producing wells. It will cover the stimulation techniques as tools to help manage and optimize reservoir development.

This comprehensive course is essential for petroleum industry professionals involved in the important activities of reservoir evaluation, development and management, who require invaluable skills in the application of the techniques described for the successful exploitation of oil and gas reservoirs.

Course Objectives

Upon successful completion of this course, participants will be able to:-

- Apply and gain an advanced knowledge on well stimulation techniques and treatments
- Discuss the phases of formation characterization including well and reservoir testing, rock mechanics and well logs
- · Explain the basics and mechanics of hydraulic fracturing
- Recognize the importance of fracturing fluid chemistry and proppants
- Perform fracture evaluation using pressure diagnostics
- Recognize the importance of fracture treatment design
- Define the various concepts of fracturing operations
- Explain thoroughly the post-treatment evaluation and evaluate fractured well performance
- Determine the basic concepts of matrix treatments
- Apply specific techniques of formation damage, including origin, diagnosis and treatment strategy
- Differentiate and discuss additives in acidizing fluids
- Analyze carbonate acidizing design
- Discuss sandstone acidizing
- Employ systematic techniques and tools in fluid placement and pumping strategy
- Evaluate Matrix Stimulation Treatment

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course covers systematic techniques and methodologies on well stimulation techniques and treatments for petroleum industry professionals who are involved in the important activities of reservoir evaluation, development and management and for those who require invaluable skills in the application of the techniques described for the successful exploitation of oil and gas reservoirs.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED
PROVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 8,000 per Delegate+ **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Konstantin Zorbalas, MSc, BSc, is a Senior Petroleum Engineer & Well Completions Specialist with 30 years of offshore and onshore experience in the Oil & Gas, Refinery & Petroleum industries. His wide expertise includes OIP Estimation & Range of Uncertainty, Waterflood Management, Water Flooding, Water Flooding & Reservoir Sourcing Issues, Water Flooding, Reservoir Souring & Water Breakthrough, Well & Reservoir Management and Monitoring, Fishing Operations, Drilling Optimization, Drilling & Work-Over Operations, Workover

Best Practices, Well Testing, Completion Design & Operation, Well Stimulation and Workover, Well Stimulation & Workover Planning, Well Completion, Servicing & Work-Over Operations, Completions & Workover, HSE in Work-Over & Drilling Operations, Well Testing Completion & Workover, Basic Drilling, Completion & Workover Operations, Advanced Drilling, Completion & Workovers Fluids, Cementing Integrity Evaluation, Cementing Design, Cement Integrity Assurance & Evaluation, Basic Cementing (Operations) & Basic Acidizing, Advanced Cementing Technology, Casing & Cementing, Advanced Cementing & Stimulation, Artificial Lift Systems, New Technology in Artificial Lift Systems, Artificial Lift Methods, Crude Oil Artificial Lift Operations, Artificial Lift Systems, Artificial Lift & Challenges, Artificial Lift Systems & Optimization Technology, Production Optimization with Artificial Lift System, Well Integrity & Artificial Lift, Formation Damage & Flow Assurance Issues, Formation Damage Evaluation, Prevention, Remediation & Control, Formation Damage (Causes, Prevention & Remediation), Well Completion Design & Operations, Crude Oil Market, Oil Reserves, Global Oil Supply & Demand, Government Legislation & Oil Contractual Agreements, Oil Projects & Their Feasibility (Revenue and Profitability), Oil & Gas Exploration and Methods, Oil & Gas Extraction, Oil Production & Refining, Technology Usage in Industrial Security; Oil & Gas Economics Modelling Evaluation Decision Making & Risk Analysis, Economic Evaluation & Global Profitability Criteria, Petroleum Economics, Fluid Properties & Phase Behaviour (PVT), Workovers & Completions, Acidizing Application in Sandstone & Carbonate, Well Testing Analysis, Reserves Evaluation, Reservoir Fluid Properties, Reservoir Monitoring, Heavy Oil Technology, Applied Water Technology, X-mas Tree & Wellhead Operations & Testing, Artificial Lift Systems (Gas Lift, ESP, and Rod Pumping), Well Cementing, Well Completion Design, Slickline Operations, Cased Hole Logging and Production Logging. Further, he is actively involved in Project Management with special emphasis in production technology and field optimization, performing conceptual studies, economic analysis with risk assessment and field development planning. He is currently the Senior Petroleum Engineer & Consultant of Abu Dhabi National Oil Company (ADNOC) Group of companies wherein he is involved in the mega-mature fields in the Arabian Gulf, predominantly carbonate reservoirs; designing the acid stimulation treatments with post-drilling rigless operations; utilizing CT with tractors and DTS systems; and he is responsible for gas production and preparing for reservoir engineering and simulation studies, well testing activities, field and reservoir monitoring, production logging and optimization and well completion design.

During his career life, Mr. Zorbalas worked as a Senior Production Engineer, Well Completion Specialist, Production Manager, Project Manager, Technical Manager, Trainer, Technical Supervisor & Contracts Manager, Production Engineer, Production Supervisor, Production Technologist, Technical Specialist, Business Development Analyst, Field Production Engineer and Field Engineer. He worked for many world-class oil/gas companies such as ZADCO, ADMA-OPCO, Oilfield International Ltd, Burlington Resources (later acquired by Conoco Phillips), MOBIL E&P, Saudi Aramco, Pluspetrol E&P SA, Wintershall, Taylor Energy, Schlumberger, Rowan Drilling and Yukos EP where he was in-charge of the design and technical analysis of a gas plant with capacity 1.8 billion m3/yr gas. His achievements include boosting oil production 17.2% per year since 1999 using ESP and Gas Lift systems.

Mr. Zorbalas has Master's and Bachelor's degrees in Petroleum Engineering from the Mississippi State University, USA. Further, he is an SPE Certified Petroleum Engineer, Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), an active member of the Society of Petroleum Engineers (SPE) and has numerous scientific and technical publications and delivered innumerable training courses, seminars and workshops worldwide.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures
20% Practical Workshops & Work Presentations
30% Hands-on Practical Exercises & Case Studies
20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course director(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday, 17th of November 2025

Day 1:	Monday, 17" of November 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0930	Reservoir Stimulation in Petroleum Production
	Introduction • Inflow Performance • Alterations in the Near-Wellbore Zone •
	Tubing Performance & NODAL* Analysis • Decision Process for Well Stimulation
	Reservoir Engineering Considerations for Optimal Production Enhancement
	Strategies • Stimulation Execution
0930 - 0945	Break
	Formation Characterization: Well & Reservoir Testing
	Evolution of a Technology • Pressure Derivative in Well Test Diagnosis •
0945 - 1115	Parameter Estimation from Pressure Transient Data • Test Interpretation
0943 - 1113	Methodology • Analysis with Measurement of Layer Rate • Layered Reservoir
	Testing • Testing Multilateral & Multibranch Wells • Permeability Determination
	from a Fracture Injection Test
	Formation Characterization: Rock Mechanics
1115 – 1245	Basic Concepts • Rock Behavior • Rock Mechanical Property Measurement •
	State of Stress in the Earth • In-situ Stress Management
1245 – 1300	Break
	Formation Characterization: Well Logs
1300 - 1420	Depth ● Temperature ● Properties Related to the Diffusion of Fluids ● Properties
	Related to the Deformation & Fracturing of Rock • Zoning
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics
	that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2: Tuesday, 18th of November 2025

Day 2:	Tuesday, 18" of November 2025
0730 – 0930	Basics of Hydraulic Fracturing
	Overview of Hydraulic Fracturing • In-Situ Stress • Reservoir Engineering •
	Rock & Fluid Mechanics • Treatment Pump Scheduling • Economics &
	Operational Considerations
0930 - 0945	Break
	Mechanics of Hydraulic Fracturing
	History of Early Hydraulic Fracture Modeling • Three-Dimensional & Pseudo-
0945 - 1045	Three-Dimensional Models • Leakoff • Proppant Placement • Heat Transfer
0343 - 1043	Models ● Fracture Tip Effects ● Tortuosity & Other Near-Well Effects ● Acid
	Fracturing • Multilayer Fracturing • Pump Schedule Generation • Pressure
	History Matching
	Fracturing Fluid Chemistry & Proppants
1045 – 1245	Water-Base Fluids ● Oil-Base Fluids ● Acid-Based Fluids ● Multiphase Fluids ●
	Additives • Proppants • Execution
1245 – 1300	Break
	Performance of Fracturing Materials
1300 - 1420	Fracturing Fluid Characterization • Characterization Basics • Translation of Field
1300 - 1420	Conditions to a Laboratory Environment • Molecular Characterization of Gelling
	Agents ● Rheology ● Proppant Effects ● Fluids Loss
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics
	that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3: Wednesday, 19th of November 2025

Day 3.	Wednesday, 19 of November 2025
0730 – 0930	Fracture Evaluation Using Pressure Diagnostics
	Fundamental Principles of Hydraulic Fracturing • Pressure During Pumping •
	Analysis During Fracture Closure • Pressure Interpretation After Fracture Closure
	Numerical Simulation of Pressure: Combined Analysis of Pumping & Closing
	Comprehensive Calibration Test Sequence
0930 - 0945	Break
	Fracture Treatment Design
0945 - 1045	Design Considerations • Geometry Modeling • Treatment Schedule • Multilayer
	Fracturing • Acid Fracturing • Deviated Wellbore Fracturing
1045 - 1245	Fracturing Operations
	Completions • Perforating • Surface Equipment for Fracturing Operations •
	Bottomhole Pressure Measurement & Analysis • Proppant Flowback Control •
	Flowback Strategies • Quality Assurance & Quality Control • Health, Safety &
	Environment
1245 - 1300	Break
1300 - 1420	Post-Treatment Evaluation & Fractured Well Performance
	Post-Treatment Fracture Evaluation • Factors Affecting Fractured Well
	Performance • Well Test Analysis of Vertically Fractured Wells • Prediction of
	Fractured Well Performance
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics
	that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Thursday. 20th of November 2025 Dav 4:

Day 4.	Thursday, 20 Of November 2025
0730 - 0930	Matrix Treatments Candidate Selection ● Formation Damage Characterization ● Stimulation Technique Determination ● Treatment Design ● Final Economic Evaluation ● Execution ● Treatment Evaluation
0930 - 0945	Break
0945 - 1045	Formation Damage: Origin, Diagnosis & Treatment Strategy Damage Characterization • Formation Damage Descriptions • Origins of Formation Damage • Laboratory Identification & Treatment Strategies & Concerns
1045 – 1245	Additives in Acidizing Fluids Corrosion Inhibitors • Surfactants • Clay Stabilizers • Mutual Solvents • Iron Control Additives • Alcohols • Acetic Acid • Organic Dispersants • Organic Solvents • Diversion • Additive Compatibility • Facility Upsets Following Acid Stimulation
1245 - 1300	Break
1300 – 1420	Fundamentals of Acid Stimulation Acid-Mineral Interactions ● Sandstone Acidizing ● Carbonate Acidizing
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Friday, 21st of November 2025 Dav 5:

Day 5.	Friday, 21 Of November 2025
0730 - 0930	Carbonate Acidizing Design Rock & Damage Characteristics in Carbonate Formations. • Carbonate Acidizing
	Rock & Damage Characteristics in Carbonate Formations • Carbonate Acidizing
	with Hydrochloric Acid • Other Formulations • Treatment Design
0930 – 0945	Break
0945 - 1045	Sandstone Acidizing
	Treating Fluids • Solubility of By-Products • Kinetics: Factors Affecting Reacting
	Rates • Hydrofluoric Acid Reaction Modeling • Other Acidizing Formulations •
	Damage Removal Mechanisms • Methods of Controlling Precipitates • Acid
	Treatment Design Considerations • Matrix Acidizing Design Guidelines • Acid
	Treatment Evaluation
	Fluid Placement & Pumping Strategy
1045 1045	Choice of Pumping Strategy • Chemical Diverter Techniques • Laboratory
1045 – 1245	Characterization • Foam Diversion • Ball Sealers • Mechanical Tools •
	Horizontal Wells
1245 - 1300	Break
	Matrix Stimulation Treatment Evaluation
1300 - 1345	Derivation of Bottomhole Parameters from Wellhead Measurements • Monitoring
	Skin Effect Evolution During Treatment • Prouvost and Economides Method •
	Behenna Method • Inverse Injectivity Diagnostic Plot • Limitations of Matrix
	Treatment Evaluation Techniques • Treatment Response Diagnosis • Post-
	Treatment Evaluation
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the Course
	Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

