

COURSE OVERVIEW IE0576 CEMS Analyzers Maintenance from ABB

Course Title

CEMS Analyzers Maintenance from ABB

Course Date/Venue

Session 1: June 30-July 04, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE Session 2: October 26-30, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

o CEUs

(30 PDHs)

AWAR

Course Reference

IE0576

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of CEMS Analyzers Maintenance. It covers the purpose and objectives of CEMS, regulatory standards, emission parameters and extractive versus in-situ systems; the ABB CEMS system architecture, types of ABB analyzers and regulatory compliance and QA/QC requirements; the functional signal paths, sensor blocks and modules and measurement principles; the user interface and menu navigation, communication protocols and data access; working with flammable/toxic gases and electrical safety practices; and the analyzer cabinet ventilation and purging and lockout/tagout procedures.

the course will also discuss Further. the NDIR measurement technology, zirconia oxygen measurement, paramagnetic oxygen measurement and FID and CLD technology (hydrocarbon and NOx); configuring CEMS system using ABB Panel 800 HMI, fieldbus/protocol settings (MODBUS, PROFIBUS), alarm and status configurations and datalogger and historian configuration; the sample conditioning system (SCS), routine maintenance tasks, preventive maintenance scheduling and calibration procedures; and troubleshooting common issues covering signal loss and noisy readings, sensor contamination and blockages, flow and pressure anomalies and internal diagnostics and log review.

IE0576- Page 1 of 9

During this interactive course, participants will learn the maintenance tools and accessories comprising of special ABB calibration tools, gas regulators, fittings, and tubing, diagnostic software tools and portable gas detectors and meters; the analyzer module replacement procedures, advanced diagnostic features and integrating with DCS/SCADA; the data logging and archiving, signal conditioning and analog output testing and redundancy and fail-safe operation; reading and interpreting ABB manuals and using wiring and layout diagrams; and applying maintenance SOP documentation and troubleshooting flowcharts.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on CEMS (continuous emissions monitoring) system) analyzers maintenance
- Discuss the purpose and objectives of CEMS, regulatory standards, emission parameters and extractive versus in-situ systems
- Identify ABB CEMS system architecture, types of ABB analyzers and regulatory compliance and QA/QC requirements
- Recognize functional blocks and signal paths, sensor modules and measurement principles, user interface and menu navigation and communication protocols and data access
- Work with flammable/toxic gases and apply electrical safety practices, analyzer cabinet ventilation and purging and lockout/tagout procedures
- Carryout NDIR measurement technology, zirconia oxygen measurement, paramagnetic oxygen measurement and FID and CLD technology (hydrocarbon and NOx)
- Configure CEMS system using ABB Panel 800 HMI and apply fieldbus/protocol settings (MODBUS, PROFIBUS), alarm and status configurations and datalogger and historian configuration
- Apply sample conditioning system (SCS), routine maintenance tasks, preventive maintenance scheduling and calibration procedures
- Troubleshoot common issues covering signal loss and noisy readings, sensor contamination and blockages, flow and pressure anomalies and internal diagnostics and log review
- Identify maintenance tools and accessories comprising of special ABB calibration tools, gas regulators, fittings, and tubing, diagnostic software tools and portable gas detectors and meters
- Employ analyzer module replacement procedures, identify advanced diagnostic features and integrate with DCS/SCADA
- Illustrate data logging and archiving, signal conditioning and analog output testing and redundancy and fail-safe operation
- Read and interpret ABB manuals, use wiring and layout diagrams, apply maintenance SOP documentation and troubleshoot flowcharts

IE0576- Page 2 of 9

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of CEMS analyzers maintenance for maintenance engineers/technicians, CEMS operators, environmental engineers, service technicians, quality assurance and regulatory compliance officers, system integrators, plant/facility managers and other technical staff.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

IE0576- Page 3 of 9

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• ******* • **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED ACCREDITED PROVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

IE0576- Page 4 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

During his career life, Dr. Ahmed has been actively involved in different Power System Activities including Roles in Power System Planning, Analysis, Engineering, HV Substation Design, Electrical Service Pricing, Evaluations & Tariffs, Project Management, Teaching and Consulting. His vast industrial experience was honed greatly when he joined many International and National Companies such as Siemens, Electricity Authority, Egyptian Electricity Holding, Egyptian Refining Company (ERC), GASCO, Tahrir Petrochemicals Project, and ACETO industries as the Instrumentation & Electrical Service Project Manager, Energy Management Engineer, Department Head, Assistant Professor, Project Coordinator, Project Assistant and Managing Board Member where he focused more on dealing with Technology Transfer, System Integration Process and Improving Localization. He was further greatly involved in manufacturing some of Power System and Control & Instrumentation Components such as Series of Digital Protection Relays, MV VFD, PLC and SCADA System with intelligent features.

Dr. Ahmed has PhD, Master's & Bachelor's degree in Electrical Engineering from the University of Wisconsin Madison, USA and Ain Shams University, respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/ Assessor/Trainer by the Institute of Leadership and Management (ILM), an active member of IEEE and ISA as well as numerous technical and scientific papers published internationally in the areas of Power Quality, Superconductive Magnetic Energy Storage, SMES role in Power Systems, Power System Blackout Analysis, and Intelligent Load Shedding Techniques for preventing Power System Blackouts, HV Substation Automation and Power System Stability.

IE0576- Page 5 of 9

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met\

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to CEMS</i> <i>Purpose & Objectives of CEMS</i> • <i>Regulatory Standards (EPA, EEA, Local)</i> • <i>Emission Parameters (Nox, SO2, CO, CO2, O2, Etc.) Overview of Extractive</i> <i>versus in-Situ Systems</i>
0930 - 0945	Break
0945 – 1030	ABB CEMS System ArchitectureArchitectureMajorMajorSystemConditioning)•SampleHandlingSystemOverview•IntegrationWithDCS/PLC/SCADA•Redundancy & Modular Design Concepts
1030 - 1130	Types of ABB Analyzers Gas Analyzers (FID, NDIR, CLD, Zro2, Paramagnetic) • Particulate & Opacity Monitors • Dust & Flow Measurement Instruments • Analyzer Selection Criteria
1130 - 1230	Regulatory Compliance & QA/QC Requirements Calibration, Zero/Span Checks • Data Validation & Reporting • Daily, Quarterly, & Annual QA Checks • Compliance Certification & Audit Process
1230 - 1245	Break
1245 - 1330	ABB AO2000 Series OverviewFunctional Blocks & Signal Paths • Sensor Modules & Measurement Principles• User Interface & Menu Navigation • Communication Protocols & Data Access
1330 - 1420	Safety Considerations & Work Permits Working with Flammable/Toxic Gases • Electrical Safety Practices • Analyzer Cabinet Ventilation & Purging • Lockout/Tagout Procedures
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	End of Day One

Day 2

0730 - 0830	NDIR Measurement Technology Infrared Absorption Principle • Light Source & Detector Mechanisms • Cross- Sensitivity & Compensation • Calibration & Linearity
0830- 0930	Zirconia Oxygen Measurement Electrochemical Oxygen Sensing • Reference & Measuring Electrodes • Temperature Compensation • Calibration & Lifetime Factors
0930 - 0945	Break
0945 – 1100	Paramagnetic Oxygen MeasurementMagnetic Susceptibility Concept • Sensor Construction & Operation • Flow &Pressure Impact • Maintenance & Troubleshooting

IE0576- Page 6 of 9

1100 - 1230	FID & CLD Technology (Hydrocarbon & NOx)
	Flame Ionization Detector (FID) Components • Carrier Gas & Flame Control •
	Chemiluminescence Principle in CLD • Interference & Calibration Gases
1230 - 1245	Break
1245 - 1330	ABB CEMS System Configuration & SetupConfiguration Using ABB Panel 800 HMI • Fieldbus/Protocol Settings(MODBUS, PROFIBUS) • Alarm & Status Configurations • Datalogger &Historian Configuration
1330 - 1420	Sample Conditioning System (SCS)Sample Probes & Filters • Sample Transport Lines (Heated/Unheated) •Chillers, Pumps, & Moisture Traps • Condensate Management & Drain System
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	End of Day Two

Day 3

Day 3	
0730 – 0830	Routine Maintenance Tasks
	Daily Visual Inspections & Leak Checks • Weekly Probe Cleaning & Filter
	Changes • Quarterly Maintenance Checklist • Long-Term Service Planning
	Preventive Maintenance Scheduling
0830- 0930	Maintenance Frequency Planning • Spare Parts & Consumables Inventory •
	Service Logs & Documentation • Analyzer Runtime Hour-Based Scheduling
0930 - 0945	Break
	Calibration Procedures
0945 - 1100	Zero & Span Gas Calibration Process • Calibration Frequency & Intervals •
	Manual versus Auto-Calibration • Calibration Drift & Documentation
	Troubleshooting Common Issues
1100 - 1230	Signal Loss & Noisy Readings • Sensor Contamination & Blockages • Flow &
	Pressure Anomalies • Internal Diagnostics & Log Review
1230 - 1245	Break
	Maintenance Tools & Accessories
1245 - 1330	Special ABB Calibration Tools • Gas Regulators, Fittings, & Tubing•
	Diagnostic Software Tools • Portable Gas Detectors & Meters
	Analyzer Module Replacement Procedures
1330 - 1420	Sensor Module Replacement • Internal Electronics Module Change • Safe
	Disassembly & Reassembly • Firmware & Configuration Retention
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	End of Day Three
1400	

Day 4

Advanced Diagnostic Features
Analyzer Self-Test Functions • Error Codes & Alarm History • Signal
Trending & Performance Metrics • Predictive Diagnostics
Integration with DCS/SCADA
Communication Protocol Mapping • Signal Scaling & Mapping• Alarm
Interface Configuration • Time Synchronization & Data Stamping
Break

IE0576- Page 7 of 9

0945 – 1100	ABB Control Builder or Maintenance SoftwareRemote Access & Configuration • Backup & Restore of Analyzer Settings •Real-Time Monitoring Via Software • Firmware Updates & Upgrades
1100 - 1230	Data Logging & Archiving Internal Logger Configuration • CSV/Log Export Setup • Compliance Data Retention • Secure Data Storage
1230 - 1245	Break
1245 - 1330	Signal Conditioning & Analog Output Testing4-20 Ma Loop Testing • Analog Scaling Verification • Digital I/O Verification• Relay/Alarm Output Testing
1330 - 1420	Redundancy & Fail-Safe Operation Redundant Analyzer Setup • Automatic Switchover Configuration • Fail-Safe Gas Routing • Alarm Prioritization Strategy
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	End of Day Four

Day 5

Day J	
	Hands-On Analyzer Maintenance
0730 – 0930	Zero & Span Calibration with Actual Gases • Cleaning Sample Lines & Probes
	Module Replacement (Dummy Unit) Fault Simulation & Resolution
0930 - 0945	Break
0045 1120	Real-World Case Studies
	Case 1: O2 Reading Drift Due to Probe Contamination • Case 2: Moisture
0945 – 1130	Ingress in Sample Lines • Case 3: NDIR Zero Drift & Troubleshooting • Case 4:
	Communication Loss with DCS
	ABB Documentation & Manuals
1130 – 1230	Reading & Interpreting ABB Manuals • Using Wiring & Layout Diagrams •
	Maintenance SOP Documentation • Troubleshooting Flowcharts
1230 – 1245	Break
1245 - 1345	Workshop: System Walkthrough
	Full System Inspection Checklist • Hands-On Configuration Review • Cross-
	Check Analyzer to HMI Readings • Simulated Calibration & Error Handling
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	End of Course

IE0576- Page 8 of 9

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

IE0576- Page 9 of 9

