

<u>COURSE OVERVIEW ME0375</u> <u>Pump Selection, Installation, Operation, Performance, Control,</u> <u>Maintenance & Troubleshooting</u>

Course Title

Pump Selection, Installation, Operation, Performance, Control, Maintenance & Troubleshooting

Course Date/Venue

Session 1: June 29-July 03, 2025/Business Meeting, Crowne Plaza Al Khobar, Al Khobar, KSA Session 2: December 21-25, 2025/Boardroom

1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

(30 PDHs)

Course Reference ME0375

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

The course is designed to provide an in-depth perspective of centrifugal pump technology in terms of selection, operation, performance, control, maintenance and repair. Topics covered include pump types and terminology, packing, mechanical seals and sealing bearings, couplings and other svstems. vital components. In addition, various pump types will be examined as to how they perform in their respective operating systems and advantages/disadvantages of various pump types will be discussed. Centrifugal pump operation, troubleshooting and maintenance will be dealt with in depth.

The course will provide participants with a complete and up-to-date knowledge of pumps and their systems. Further, participants will learn more about selection, operation and maintenance strategies which will assist in increasing pump availability and reliability. Upon the completion of this course, participants will be able to troubleshoot all types of pump problems.

ME0375 - Page 1 of 7

ME0375-06-25|Rev.509|19 November 2024

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply proper techniques in selection, installation, operation, performance, control, maintenance and troubleshooting of various types of centrifugal pumps used in process industry
- Maintain and troubleshoot all types of pumps including the failure analysis and troubleshooting of packing and mechanical seals
- Properly maintain pump bearings and describe the importance of couplings and alignment
- Implement the maintenance and reliability programs to analyze and minimize pump costs and improve its reliability

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of centrifugal pumps for those who are involved in the selection, installation, operation, performance, control, maintenance and troubleshooting of pumps. This includes plant and maintenance engineers, process engineers, maintenance technical staff, production & operation staff and reliability specialists working in a wide variety of process plant environments such as petrochemical, plastics, fertilizers, power utilities, oil, gas and water utilities.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

ME0375 - Page 2 of 7

ME0375-06-25|Rev.509|19 November 2024

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

ME0375 - Page 3 of 7

ME0375-06-25|Rev.509|19 November 2024

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Daniel Williams, PE, BSc, is a Senior Mechanical & Maintenance Engineer with over 35 years of reliability & maintenance experience. His expertise covers Valve Selection & Sizing, Pressure Relief Value (PRV) & Pressure Safety Valve (PSV) Design of Operation, Valves & Safety Devices Maintenance & Troubleshooting, PRV & PSV Inspection & Testing, Advanced Fluid Mechanics, Valve Actuation & Control System,

Safety Protocols & Emergency Shut-off Systems, Valve Engineering Codes & Standards, Centrifugal Pumps & Troubleshooting, Reciprocating & Centrifugal Compressors, Screw Compressor, Compressor Control & Protection, Gas & Steam Turbines, Turbine Operations, Gas Turbine Technology, Valves, Process Control Valves, Bearings & Lubrication, Heat Transfer, Machine Design, Fluid Mechanics, Heating & Cooling Systems, Heat Insulation Systems, Heat Exchanger & Cooling Towers, Maintenance Planning & Scheduling, Maintenance Planning Process, Maintenance Shutdown & Turnaround, Maintenance Audit Best Practices, Maintenance & Reliability Management, **Reliability** Engineering, **Maintenance & Reliability** Best Practices, Reliability, Availability & Maintainability (RAM), Root Cause Analysis, Maintenance Process, Gearboxes, CMMS (SAP, MAXIMO, ELLIPSE), Maintenance & Reliability Management, Machinery Root Cause Failure Analysis (RCFA), Lubrication Technology, Rotating, Auxiliary & Static Equipment such as Pump, Valve, Compressor, Pipe, Piping, Turbines, Bearings, Blower, Fan and Heat Exchanger, Hydraulic Systems, Material Cataloguing & Specifications, Vibration Analysis, Preventive Maintenance and Condition Based Monitoring.

Mr. Williams worked with several international companies in North America, South America, Europe, Australia and Asia. He occupied significant positions such as a Maintenance Manager, Product Manager, Senior Mechanical Projects Engineer, Mechanical Engineer, Maintenance Engineer, Maintenance Planning Superintendent, Maintenance Reliability Superintendent, & Senior Maintenance Planner, Maintenance Planner, Materials Specialist, Maintenance Improvement Process Co-Coordinator. Mechanic Operator and Instructor/Trainer.

Mr. Williams has a **Bachelor's** degree in **Mechanical Engineering** from the **University of Arizona**, **USA**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)** and has delivered various trainings, workshops, seminars, courses and conferences internationally.

ME0375 - Page 4 of 7

PN

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Pump Types & Terminology
	Pumps • Pump Terminology • Nomenclature and Definitions • Pump Types
0930 - 0945	Break
0945 - 1100	Centrifugal Pumps
	Centrifugal Pump Theory • Operating Characteristics • Centrifugal Pump
	<i>Operation</i> • <i>Cavitations and NPSH</i> • <i>Elements of Minimum Continuous Safe Flow</i>
	(MCSF) • How to Calculate MCSF • Types of Centrifugal Pumps
	Centrifugal Pump Specification & Selection
1100 – 1200	Selecting a Pump Vendor • Industry Standards • API vs. ANSI Standards •
	Driver Size Selection
1200 – 1215	Break
1215 – 1420	Centrifugal Pump Specification & Selection (cont'd)
	Variable Speed Drive Selection • Pump Design Audit/Review
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow

Day 2

0730 - 0930	Centrifugal Pump Maintenance & Repair
	Parts of Centrifugal Pumps • Bearing Basics • Balancing Criteria • Installation
	and Startup
0930 - 0945	Break
0945 – 1100	Centrifugal Pump Maintenance & Repair (cont'd)
	Troubleshooting Centrifugal Pumps • Inspecting Centrifugal Pump Components
	for Wear • Centrifugal Pump Overhaul • Case Studies
1100 - 1200	Positive Displacement Pumps
	Reciprocating Pumps • NPSH Requirement for Reciprocating Pumps • Rotary
	Pump Theory and Operation • PD Pumps in the Operating System • How to
	Select Progressing Cavity Pumps
1200 – 1215	Break
	Special Purpose PD Pumps
1215 – 1420	Fluid Metering System Design and Options • PD Metering Pumps, Plunger
	Pumps, Diaphragm Pumps, Rotary Metering Pumps • Controlling Pulsation and
	Surge
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

ME0375 - Page 5 of 7

Day 3	
0730 - 0930	Selection of PD Pumps
	Selecting Reciprocating (Power) Pumps • Selecting Rotary Gear Pumps •
	Selecting Screw Pumps • Handling Abrasives and Corrosives with PD Pumps
0930 - 0945	Break
0945 - 1100	Positive Displacement Pump Operation, Maintenance & Repair
	<i>Operation</i> • <i>Reciprocating (Power) Pump Liquid End Maintenance</i> • <i>Reciprocating</i>
	Pump Valve Repair
1100 – 1200	Positive Displacement Pump Operation, Maintenance & Repair (cont'd)
	Power End Maintenance • Stuffing Box Design and Upgrading • Case Studies
1200 – 1215	Break
	Packing & Mechanical Seals
1215 1420	Compression Packing • Molded (Automatic) Packing • Basic Principles of
1215 - 1420	Mechanical Seals • Face Materials • Secondary Seal Materials • Single Mechanical
	Seals • Single Mechanical Seal Flushing Plans
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4

D

0730 - 0930	Mechanical Seal Systems
	Dual Sealing Systems and Flushing Plans • API 682 Reference Guide • Gas
	Barrier Seal Technology • Tough Applications: Slurries, Pulp and Paper,
	Abrasives, Crystallizing Fluids, High Temperature Fluids, Autoclaves, Mixers and
	Reactors • Mechanical Seal Selection Strategies
0930 - 0945	Break
0945 - 1100	Mechanical Seal Failure Analysis & Troubleshooting
	Failure Analysis • Mechanical Seal Troubleshooting • Determining Leakage Rates
	• Ascertaining Seal Stability • Troubleshooting Hydraulic Instability
1100 – 1200	Mechanical Seal Maintenance & Repair
	Bellows Seal Repair • Cartridge Seal Installation and Management • Seal Face Care
	• Seal Consolidation and Standardization Programs
1200 – 1215	Break
1215 - 1420	Bearing Care & Maintenance
	Basic Concepts of Bearings • Bearing Classifications • Bearing Care and
	Maintenance • Lubrication Management
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

ME0375 - Page 6 of 7

Day J	
0730 – 0930	Couplings & Alignment
	Purpose of Couplings • Types of Couplings • Alignment Methods • Foundation
	and Grouting Guidelines • Inlet Piping Configuration and Piping Installation
	Guidelines
0930 - 0945	Break
0945 - 1100	Pump Maintenance & Reliability
	A Systems Approach to Pump Reliability • Predictive/Preventive
	Pump Maintenance & Reliability (cont'd)
1100 – 1200	Addressing Pump Vibrations - Mechanical & Hydraulic • Fifty Upgrading
	Opportunities for Centrifugal Pumps
1200 - 1215	Break
	Reliability Programs
1215 - 1345	Building Availability Data • Availability and Reliability Goals • How to Analyze
	Pump Costs • How to Initiate a Pump Reliability Improvement Program
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Centrifugal Pumps and Troubleshooting Guide 3.0".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

ME0375 - Page 7 of 7 ME0375-06-25|Rev.509|19 November 2024

