

COURSE OVERVIEW EE0422 Electrical Engineering Principles

CEUS

(30 PDHs)

Course Title Electrical Engineering Principles

Course Date/Venue July 13-17, 2025/Meeting Plus 9, City Centre Rotana, Doha, Qatar

Course Reference EE0422

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

PN

EE0422 - Page 1 of 10

EE0422-07-25|Rev.05|30 April 2025

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt in the class will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date knowledge on electrical engineering principles. It covers the electrical concepts of electrical engineering; the fundamental concepts of voltage, current, resistance and power: the basic circuit elements and circuit analysis techniques; the series and parallel resistor circuits and node-voltage and mesh-current methods for circuit analysis; the Thevenin's and Norton's theorems for simplifying complex circuits; and the alternating current (AC) and sinusoidal waveforms, AC circuits, phasors and complex numbers.

During this interactive course, participants will learn the impedance and admittance concepts for circuit analysis and power calculations in AC circuits: the IECC/IEEE standards. power generation, transmission and distribution systems; the power systems components, power factor correction, reactive power compensation, smart grids and renewable energy integration; the modern power system components, electromagnetic theory and transformers; the all types of tests for power transformers; modifying old transformer and classifying protective relays; the tripping devices, circuit breakers, earthing system and standard requirement; the control systems, digital electronics, power quality and insulation; the general principles to hazardous area classification; and the analog and digital communication systems.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a good working knowledge on electrical engineering principles
- Discuss the electrical concepts of electrical engineering including the fundamental concepts of voltage, current, resistance, and power
- Identify basic circuit elements and apply circuit analysis techniques
- Analyze series and parallel resistor circuits and carryout node-voltage and meshcurrent methods for circuit analysis
- Review Thevenin's and Norton's theorems for simplifying complex circuits
- Discuss alternating current (AC) and sinusoidal waveforms as well as analyze AC circuits using phasors and complex numbers
- Carryout impedance and admittance concepts for circuit analysis and power calculations in AC circuits
- Recognize IECC/IEEE standards, power generation, transmission and distribution systems including power systems components, power factor correction, reactive power compensation, smart grids and renewable energy integration
- Identify modern power system components, electromagnetic theory and transformers
- Carryout all types of tests for power transformers, modify old transformer, apply transformer protection and classify protective relays
- Recognize tripping devices, circuit breakers, earthing system and standard requirement
- Identify control systems, digital electronics, power quality and insulation
- Discuss the general principles to hazardous area classification including analog and digital communication systems

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of electrical engineering principle for electrical engineers, plant engineers, mechanical engineers, process engineers, maintenance engineers, facilities managers, facility professionals and other technical staff.

EE0422 - Page 2 of 10

EE0422-07-25|Rev.05|30 April 2025

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

EE0422 - Page 3 of 10

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Herman Eksten (Theunis Hermanus Eksteen), PE, PgDiP, is a Senior Electrical, Instrumentation & Control Engineer with over 40 years of extensive experience within the Petrochemical, Oil & Gas and Power industries specializing in Check System Equipment for Field Operator, Inspect Equipment for Defects & Submit Reports, Evaluate Equipment Conditions & File Reports, Conduct Equipment Inspection & Reporting, Identify Equipment Malfunctions & Prepare Reports, System Defect Analysis & Reporting, Monitor & Report on Equipment

Perform Equipment Checks & Submit Reports, Control Systems, Deficiencies. Programmable Logic Controllers (PLC), SCADA System, PLC & SCADA - Automation & Process Control, PLC & SCADA Systems Application, Technical DCS/SCADA, PLC-SIMATIC S7 300/400: Configuration, Programming and Troubleshooting, PLC, Telemetry and SCADA Technologies, Cyber Security of Industrial Control System (PLC, DCS, SCADA & IED), Basics of Instrumentation Control System, DCS, Distributed Control System -Operations & Techniques, Distributed Control System (DCS) Principles, Applications, Selection & Troubleshooting, Distributed Control Systems (DCS) especially in Honeywell DCS, H&B DCS, Process Control & Safeguarding, Field Instrumentation, Instrumented Protective Devices Maintenance & Testing, Instrumented Protective Function (IPF), **Refining & Rotating Equipment** and Distributed Control Systems (**DCS**). Further, he is also well-versed in Electrical Safety, Certified HV Electrical Safety, Low Voltage Electrical Safety, Electrical Circuits: Series and Parallel Connection, Electrical Faults & Protective Devices, Risk Control Methods, LOTO - Breakers Operation in Electricity Substation, LOTO Principles and Procedures, Arc Flash Risk Assessment, Safety in Power Electronic Equipment & Lasers, Circuit Breakers & Switchgears, Switchgear Assets Management, Circuit Breakers Control Circuits, Substation Maintenance Techniques, High Voltage Operation, Electrical Protection, Overhead Lines & Substation, Power Supply, High Voltage Substation, Electrical Protection Design, Earthing & Lightning Protection Design, Underground Equipment, Distribution Network Maintenance & Construction, Transformers Operation & Maintenance, Electric Power System, Power Plant Management, Substation Commissioning & Troubleshooting, Cable Splicing & Termination, Electrical Installation & Maintenance, Power Generation Operation & Control, Switchgear Life Assessment, Structured Cabling, Electric Power System, Power System Stability, Power System Planning & Economics, Power Flow Analysis, Combined Cycle Power Plant, UPS & Battery System, Variable Speed Drives, and HV Motors & Transformers. He is currently the Lead Electrical Engineer of SNC-LAVALIN wherein he is responsible for basic designs and successful implementation of electrical engineering to plant overhead lines and substations.

During his career life, Mr. Eksten held various positions such as the Lead Electrical Engineer, Operations Manager, Project Engineer, Technical Specialist, Customer Executive, District Manager, Instrumentation Engineer, Electrical Protection Specialist, High-Voltage Operator and Apprentice Electrician for FOX Consulting, UHDE (ThyssenKrupp Engineering), TWP Projects/Consulting (EPMC-Mining), ISKHUS Power, Rural Maintenance (PTY) Energia de Mocambique Lda., Vigeo (PTY) Ltd and ESKOM.

Mr. Eksten is a **Registered Professional Engineering Technologist** and has a Postgraduate Diploma in Management Development Programme and a National Higher Diploma (NHD) in Electrical Power Engineering. Further, he is a **Certified Instructor/Trainer**, a Senior member of the South African Institute Electrical Engineers (**SAIEE**) and holds a Certificate of Registration Membership Scheme from the Engineering Council of South Africa (**ESCA**). He has further delivered numerous trainings, courses, seminars, workshops and conferences internationally.

EE0422 - Page 4 of 10

Course Fee

US\$ 6,000 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

0730 – 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
0830 - 0930	<i>Introduction to Electrical Engineering – Refresh of Electrical Concepts</i> <i>Electrical Engineering and its Applications • Fundamental Concepts: Voltage, Current,</i> <i>Resistance, and Power • Basic Circuit Elements: Resistors, Capacitors, and Inductors •</i> <i>Transient Analysis in RL and RC Circuits • Circuit Analysis Techniques: Ohm's Law,</i> <i>Kirchhoff's Laws, and Voltage/Current Division • Analysis of Series and Parallel Resistor</i> <i>Circuits • Node-voltage and Mesh-Current Methods for Circuit Analysis • Thevenin's</i> <i>and Norton's Theorems for Simplifying Complex Circuits</i>	
0930 - 0945	Break	
0945 – 1100	AC Circuits Alternating Current (AC) and Sinusoidal Waveforms • Analysis of AC Circuits using Phasors and Complex Numbers • Impedance and Admittance Concepts for Circuit Analysis • Power Calculations in AC Circuits: Real Power, Reactive Power, and Apparent Power - Impedance and Admittance Concepts for Circuit Analysis • Power Calculations in AC Circuits: Real Power, Reactive Power and Apparent Power Power Systems ECC/IEEE Standards - Power Generation, Transmission, and Distribution Systems • Power System Components: Generators, Transformers, Transmission Lines and Distribution Networks	
1100 – 1215		
1215 – 1230	Break	
1230 – 1420	Power Systems (cont'd) Power Factor Correction and Reactive Power Compensation • Smart Grids and Renewable Energy Integration	
1420 - 1430	Recap	
1430	Lunch & End of Day One	

Day 1: Sunday, 13th of July 2025

EE0422 - Page 5 of 10 EE0422-07-25|Rev.05|30 April 2025

Day 2:	Monday, 14 th of July 2025
	Overview of Modern Power System Components
0720 0020	Structure of the Electrical Power System • Generating Units - Synchronous Generators,
0750 - 0950	Exciters and Automatic Voltage Regulators, Turbines and their Governing Systems •
	Substations - Types of Modifications
0930 - 0945	Break
	Electromagnetic Theory
0045 1115	Electromagnetic Fields and Maxwell's Equations • Electrostatics and Magnetostatics:
0945 - 1115	Electric and Magnetic Fields, Gauss's Law, Ampere's Law • Electromagnetic Induction:
	Faraday's Law, Lenz's Law, and Inductance
	Transformers
	Transformer Theory and Principles • Generator Transformers - Power Transformers •
1115 – 1230	Distribution Transformers • Dry Type Transformers • Transformer Connections •
	Loading Power Transformers • Transformer Installation and Maintenance • Problem and
	Failure Investigations • On-line Monitoring of Liquid-Immersed Transformers
1230 - 1245	Break
	All Types of Test for Power Transformers
1245 – 1420	Instrument Transformers – Current & Voltage Transformers • Tap Changers • De-
	Energized Tap Changers (DETC) • Load Tap Changers(OLTC) & Controls • Built-on
	Protections (Buchholz & Similar Relays) Cooling Systems Fire Fighting
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3:	Tuesday, 15 th of July 2025
	Transformer Modification of Old Transformer
0730 – 0830	Commissioning Procedures for New and Renewal of Transformers • Transformer
	Protection - Basic Overview of System Protection • Instrument
	Transformers Protection
0020 0020	Relays • Time Grading Principles • Practical Examples • AC Circuits • High
0830 - 0930	Voltage/Low Voltage/ Relays/ Switchgears Unit Protection • Transformer Protection •
	The Protection of Synchronous • Generators • Transmission Line Protection
0930 - 0945	Break
	Protection Relays
	Introduction to Protection • Protection Relays (History; Construction and Principles of
0945 - 1115	Operation; Modern Technology) • Classification of Protection Relays and Codes -Main
	Protection and Back-up Protection • Intelligent Electronic Devices (IED's) • Fuses
	(Characteristics, Applications and Special Cares) • Examples and Exercises
	Tripping Devices – Circuit Breakers
	<i>The Mechanism of Electric Arc Breakdown</i> • <i>Types of Circuit Breakers and Applications</i>
1115 – 1230	(LV, MV and HV) - Main Characteristics • Operating Mechanism, Tripping Circuits
	and Control Systems • Metal Clad Switchgear Maintenance Details - SF6 Circuit Breaker
	- Examples
1230 – 1245	Break
	Earthing System & Standard Requirement
1245 - 1420	Solid, Impedance and Ungrounded Systems • The Implications of Various Grounding
1240 1420	Techniques on System Performance • Earth Grid and Calculations • Touch and Step
	Potentials • Examples
1420 - 1430	Recap
1430	Lunch & End of Day Three

EE0422 - Page 6 of 10

Day 4:	Wednesday, 16 th of July 2025
0730 - 0930	Control Systems
	Control Systems and Feedback Principles • Transfer Function Representation of Systems
0930 - 0945	Break
0945 - 1115	<i>Control Systems (cont'd)</i> Block Diagram and Signal Flow Graph Representation • Stability Analysis and Stability Criteria
1115 - 1230	Digital Electronics & Control Systems Industrial UPSs • Programmable Logic Controllers (PLCs) - Control Systems and Feedback Principles - Block Diagram and Signal Flow Graph Representation • Stability Analysis and Stability Criteria - Batteries
1230 - 1245	Break
1245 - 1420	Power QualityWiring and Grounding for Power Quality • Harmonics in Power Systems • Voltage Sags• Voltage Fluctuations and Lamp Flicker in Power Systems • Power Quality Monitoring
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5:	Thursday, 17 th of July 2025
0730 - 0930	Insulation Materials • Insulation Measurement Methods • Heat, Lightning Surge and Transients Effects on Insulation • Insulation System Construction • Modes of Degradation • Ohm's Law • Leakage Current • Polarization Current • Selecting Test Voltages • Spot Readings
0930 - 0945	Break
0945 - 1045	<i>General Principles/Introduction to Hazardous Area Classification</i> Defining Hazardous Areas (Zoning) - EN 60079-10 • ATEX 137 • API 500 • Typical Gas Hazard • API RP 505 • IEEE • ISA - Methods of Explosion Protection
1045 - 1215	Communication Systems Analog and Digital Communication Systems • Modulation Techniques: Amplitude Modulation (AM), Frequency Modulation (FM), and Pulse Modulation
1230 - 1245	Break
1245 - 1345	<i>Communication Systems (cont'd)</i> <i>Telecommunications Networks and Protocols</i> • <i>Basics of Wireless Communication</i> <i>Systems: Cellular Networks, Wi-Fi, and Bluetooth</i>
1345 - 1400	<i>Course Conclusion</i> <i>Using this Course Overview, the Instructor(s) will Brief Participants about the Course</i> <i>Topics that were Covered During the Course</i>
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

EE0422 - Page 7 of 10

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Troubleshooting Electrical Circuits V4.1", Power World" and "ETAP software".

EE0422 - Page 8 of 10

EE0422-07-25|Rev.05|30 April 2025

Motor Control Techniques

Run M. Calculations Conductor Type Tower Configuration Parameters Calculation Amp to MVA Conversion Reverse Lookup	2	Open Windows -
Input Data Conductor Type Tower Configuration Line Length Length Units English Power Base T00.000 NMA Voltage Base 138.000 NMA Voltage Base 138.000 NMA Voltage Base Admittance Base 0.00525 Mhos	Peruits Distributed Results Intermediate Results R = Ohrin per phase B = Sterraris per phase G = Sterraris per phase G = PU per phase S = PU per phase G = PU per phase MVA MVA	
UNVAR SIX IMA PU Left Area Cost 4189 \$/h AGC ON	Note: Calculated using the long-line model of a transmission line (hyperbolic equations) Select Conductors and Configurations Database ? Help 201@MWW ACC ON 200@MWW 0 MVar Right Area Cost 4715 \$/h	
Edit Mode X = 20.96 Y = 66.22	war Warld Simulator	

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

EE0422 - Page 10 of 10

EE0422-07-25|Rev.05|30 April 2025

