

COURSE OVERVIEW ME0398 Pumps, Compressors & Turbines Operation and Maintenance

Course Title

Pumps, Compressors & Turbines Operation and Maintenance

Course Date/Venue

February 02-06, 2026/Gracia Boardroom, Le Meridien Barcelona Hotel, Barcelona, Spain

Course Reference

ME0398

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide delegates with a detailed and up-to-date overview of the fluid mechanic fundamentals and operating practice of pumps, compressors and turbines. It will address aspects of both axial and centrifugal compressors. Upon the successful completion of this course, participants will have acquired the practical knowledge to enable them not only to choose the correct device for a particular application but also be in a position to resolve many commonly occurring operating problems.

The course is ideal for those personnel in the oil, gas, petrochemical, chemical, power and other process industries who require a wider and deeper appreciation of pumps, compressors and turbines, including their design, performance and operation. No prior knowledge of the topic is required. Participants will be taken through an intensive primer of turbo-machinery principles, using the minimum of mathematics, and will learn how to solve the many and varied practical industrial problems that are encountered. The course makes use of an extensive collection of VIDEO material.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply a comprehensive knowledge in pumps, compressors & turbines and troubleshoot rotating equipment in a professional manner
- Identify the different types of turbomachinery including basic design aspects and highlighted problem areas
- Minimize the compressor work by understanding the processes involved and identifying their efficiency
- Discuss the axial flow compressor and the corresponding velocity triangles including torque and power calculations
- List the different types of centrifugal machines including their design, installation, operation, maintenance, re-rate/retrofit and troubleshooting
- Recognize the various beneficial design aspects of turbomachines and understand the crucial process of cavitation in pumps
- Carryout the proper methods of centrifugal pumps installation, operation, maintenance and troubleshooting

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of pumps, compressors and turbines for those who are involved in the design, selection, maintenance or troubleshooting of such equipment. This includes maintenance, reliability, integrity, engineering, production and operations managers, engineers and other technical staff. Project managers and engineers will also benefit from this program.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. George Poulos, MBA, MSc, BSc, CEng, is a Senior Mechanical & Maintenance Engineer with over 30 years of extensive experience within the Oil & Gas, Petrochemical, Refinery, Construction, Aircraft & Shipbuilding Industry. His wide experience cover in the areas of Pumps & Compressors Maintenance & Troubleshooting, Centrifugal Pump Design, Installation & Operation, Centrifugal Pump Maintenance & Troubleshooting, Pumps & Valves Operation, Compressors &

Turbines Maintenance & Troubleshooting, Gas Turbine Design & Maintenance, Gas Turbine Troubleshooting, Bearings, Seals & Couplings, Reliability Engineering, Maintenance & Reliability Best Practices, Reliability, Availability & Maintainability (RAM), Root Cause Analysis, Maintenance Process, Reliability-Centered Maintenance (RCM), Reliability Engineering Analysis (RE), Root Cause Analysis (RCA), Asset Integrity Management (AIM), Reactive & Proactive Maintenance. Maintenance Management. Aluminium Oxides, Aluminium Smelting Process, Basic Steel Making Process, Hot Rolling Process, Hot Strip Mill, Mill Operations, Roll Mill, Steel Making Process, Steel Manufacturing, Electric Arc Furnace (EAF), Steel Forging, Steel Manufacturing & Process Troubleshooting, Slit Rolling, Carbon Steel Pipe Wall Thickness & Grade Selection, Ferro-Alloys, Steel Metallurgy, Steel Structure Welding, Steelmaking Slag, Steel Making Application, Heat Treatment & Prevention Techniques, Corrosion Fabrication & Inspection and Post Weld Heat Treatment. Further, he is also well-versed in Welding Inspection, Welding & Machine Techniques, TIG & Arc Welding, Shielded Metal Arc Welding, Gas Tungsten & Gas Metal Arc Welding, Welding Procedure Specifications & Qualifications, Aluminium Welding, Hot Work-Safety, SMAW, GTAW, Welding Techniques, Pipeline Welding Practices, Welding Engineering, Welding Fatigue & Fracture Mechanics, Welding Inspection Technology, Welding Safety, Welding Defects Analysis, Welding Technology, Welding Problems, Welding & Non **Destructive** Testing and **Metallurgy Techniques**.

During his career life, Mr. Poulos has gained his practical and field experience through his various significant positions and dedication as the Chief Executive, Head of Technical Studies, Manager, Senior Consultant, Lead Welding Engineer, Senior Welding Engineer, Design Engineer, Sales Engineer, Author, Welding Instructor, Visiting Lecturer and Technical Proposal Research Evaluator from various international companies such as Greek Welding Institute, Hellenic Quality Forum and International Construction Companies such as Shipbuilding, Aircraft Industry and Oil and Gas Industry.

Mr. Poulos is a Registered Chartered Engineer and has a Master's degree in Naval Architecture, a Bachelor's degree in Welding Engineering and a Master of Business Administration (MBA) from the Sunderland University, Aston University and Open University, UK, respectively. Further, he is a Certified Trainer/Instructor, an active Member of Chartered Quality Institute (CQI), The British Welding Institute (TWI), The Royal Institution of Naval Architects (RINA) and American Welding Society (AWS), a Registered EWF/IW (European Welding Federation-International Welding Institute W/E) and an IRCA Accredited External Quality Systems Auditor through BVQI. He is an Author of Technical Book dealing with Protection/Health/Safety in the Welding/Cutting domain and delivered various trainings, seminars, conferences, workshops and courses globally.

Course Fee

US\$ 8,800 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday, 02nd of February 2026

Day I.	Monday, UZ** Of February 2020
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Turbomachinery Highlighted Problem Areas
0930 - 0945	Break
0945 – 1000	Ideal Gas Equation & Practical Application
0943 - 1000	Isentropic Processes • Property Diagrams Involving Entropy
1000 - 1100	Isentropic Processes of Ideal Gases
	Constant Specific Heats • Relative Pressure and Relative Specific Volume
	Minimizing Compressor Work
1100 - 1230	Polytropic Processes • Multi-Stage Compression with Inter-Cooling • Isentropic
	Efficiency of Turbines • Isentropic Efficiency of Compressors and Pumps
1230 - 1245	Break
1245 - 1330	Momentum & Bernoulli's Relations
	General Relationship • Relationships for Incompressible Fluids
1330 - 1420	VIDEO: Basic Pump Types & Technology
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

Day 2: Tuesday, 03rd of February 2026

Day L.	ruesday, 05 Of February 2020
0730 - 0800	General Description of Turbomachines
	Centrifugal Pump • Centrifugal Turbine • Centrifugal Air Compressor
0800 - 0830	Impulse Turbine
	Velocity Triangles
0830 - 0900	Axial Flow Compressor
	Velocity Triangles • Torque Calculation and Torque Coefficient • Power Calculation
	and Power Coefficient
0000 0020	Centrifugal Machines
0900 - 0930	Torque Calculation • Head Coefficient • Flow Coefficient • Torque Coefficient
0930 - 0945	Break
0945 - 1015	Performance Curves
1015 - 1100	Centrifugal Pump
	Centrifugal Multistage Pump • Mixed Flow Machines • Centrifugal Air
	Compressor
1100 - 1130	Affinity Laws
	Effect of Impeller Speed • Effect of Impeller Diameter

1130 – 1200	Specific Speed
1200 - 1230	Specific Radius
1230 - 1245	Break
1245 - 1315	Hydraulic Turbines
1315 - 1330	VIDEO: Fundamentals of Pump Performance 1
	Design Aspects of Turbomachines
1330 - 1400	Linear Cascades • Radial Cascades • Three- Dimensional Aspects of Axial- Flow
	Machines •Elementary Design Considerations
1400 - 1420	Cavitation
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Wednesday 04th of February 2026 Day 3.

Day 3:	wednesday, 04" of February 2026
0730 - 0930	Centrifugal Pumps Basics
	Types of Centrifugal Pumps • Self- Priming Pumps • Specific Speeds • Suction
	Specific Speed • Best Efficiency Point • Affinity Laws
0930 - 0945	Break
	Centrifugal Pump Design
0945 - 1100	Balancing Disc • Impeller NPSHR • Impeller Centre-Rib • Mechanical Seals •
	Velocity Head
	Pump Sales
1100 – 1230	Affinity Laws •Pump Software • Suction Lift • Viscosity • Re-Rate/Retrofit •
	Head-Rise • Radial/Horizontal Split Case
1230 - 1245	Break
1245 1220	Centrifugal Pump Installation
1245 – 1330	Foundation • Soft Foot • Suction Pipe • Suction Strainer
1220 1420	VIDEO: Fundamentals of Pump Performance 2
1330 – 1420	Discussion Forum
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Dav 4: Thursday, 05th of February 2026

Day 4. Illuisuay, 05 Oi February 2020	
	Centrifugal Pump Operation
0730 – 0930	Start-Up • Minimum Flow • Maximum Pump RPM • Motor Amps/Specific
	Gravity • Entrained Gas
0930 - 0945	Break
0945 – 1100	Centrifugal Pump Operation (cont'd)
	Operation at Shut Off • Temperature-Rise • Thermal Shock
1100 – 1230	Centrifugal Pump Maintenance
	Case Gasket • Checking for Wear Clearance • Oil Change • Storage
1230 - 1245	Break
1245 – 1315	Centrifugal Pump Re-Rate/Retrofit
	Impeller Cut • NPSH • De-Staging • Electric Motor Sizing • Viscosity Changes

1315 – 1420	VIDEO: Hydraulic Loads, Critical Speed & Torque Discussion Forum
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Dav 5:	Fridav. 06 th of February 2026
Dav 5.	riuav. Oo Oi rebiuaiv 2020

Day 5:	Friday, 06" of February 2026
0730 - 0830	Centrifugal Pump Troubleshooting
	Bearing Failures • Bearing Housing Oil Leakage • Cavitation Noise and Damage
0830 - 0930	VIDEO: Bearings, Seals & Couplings
0930 - 0945	Break
	Centrifugal Pump Troubleshooting (cont'd)
0945 – 1100	Impeller Cavitation/Erosion • Vibration • Cracked Volute Tongues • NPSH •
	Viscosity Effects
1100 - 1230	Group Discussions
1230 - 1245	Break
1245 - 1345	VIDEO: Special Pump Topics & Final Discussion
1345 – 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

<u>Practical Sessions</u>
This practical and highly-interactive course includes real-life case studies and exercises:-

<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>



