

COURSE OVERVIEW ME0384 HVAC Systems

Course Title

HVAC Systems

Course Date/Venue

December 07-11, 2024/Meeting Plus 9, City Centre Rotana, Doha, Qatar

O CEUS

Course Reference ME0384

(30 PDHs) Course Duration/Credits AWA Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

(1) Industrial Facility Visit: Course participants will be taken to an industrial facility where they will practice testing, maintenance and troubleshooting. In case that this course is organized inside client premises (In-House), then client shall provide access to its HVAC and refrigeration workshop for practical sessions.

(2) HVAC Simulator: Participants will use in the class the state-of-the-art HVAC Simulator to practice some of the skills learnt.

This course is designed to provide participants with a detailed and up-to-date overview of HVAC Systems. It covers the importance and components of an HVAC system; the basic principles of heat transfer and thermodynamics; the heating systems, cooling systems, ventilation systems and air distribution systems; the HVAC system controls, control strategies, building automation systems (BAS) and energy management and optimization; the energy efficiency measures for HVAC systems, energysaving technologies, HVAC system maintenance and optimization and green building standards and certifications; and the factors affecting indoor air quality, pollutant sources and their health effects and air filtration and purification systems.

ME0384 - Page 1 of 11

During this interactive course, participants will learn the importance of indoor air quality through ventilation strategies and load calculation and system sizing; the HVAC system installation best practices, commissioning process, testing and balancing procedures and start-up and performance verification; the preventive maintenance tasks for HVAC systems, troubleshooting, safety precautions during maintenance and repairs and documentation and record-keeping; the hydronic systems and types of air conditioning systems; and the ductwork design and installation.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on HVAC systems
- Discuss the importance and components of an HVAC system including the basic principles of heat transfer and thermodynamics
- Recognize the heating systems, cooling systems, ventilation systems and air distribution systems
- Carryout HVAC system controls, control strategies, building automation systems (BAS) and energy management and optimization
- Apply energy efficiency measures for HVAC systems, energy-saving technologies, HVAC system maintenance and optimization and green building standards and certifications
- Identify the factors affecting indoor air quality, pollutant sources and their health effects and air filtration and purification systems
- Improve indoor air quality through ventilation strategies and apply load calculation and system sizing
- Employ HVAC system installation best practices, commissioning process, testing and balancing procedures and start-up and performance verification
- Implement preventive maintenance tasks for HVAC systems, troubleshooting, safety precautions during maintenance and repairs and documentation and record-keeping
- Recognize hydronic systems and types of air conditioning systems as well as apply ductwork design and installation

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of HVAC systems for HVAC technicians, mechanical engineers, facility managers, building contractors, building inspectors, energy auditors and architects.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

ME0384 - Page 2 of 11

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

• B

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

<u>Course Fee</u>

US\$ 6,000 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

ME0384 - Page 3 of 11

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Dimitry Rovas, CEng, MSc, PMI-PMP, SMRP-CMRP is a Senior Mechanical & Maintenance Engineer with extensive industrial experience in Oil, Gas, Power and Utilities industries. His expertise includes District Cooling: Plant: Design, Operation & Maintenance HVAC System, HVAC Equipment Terminology, HVAC System Block Load Calculation, HVAC System Development of Drawings, Air Distribution System, Pipeline System Design, Construction, Maintenance and Repair, Facilities & Pipeline Integrity Assessment, Pipeline Welding Practices, Internal Corrosion of Pipelines, Pipeline Integrity Management & Risk Assessment, Thermal Insulation, Insulation Standards & Regulations, Insulation Materials & Selection, Piping System Insulation,

Insulation Installation Techniques, Insulation Inspection & Quality Control, Insulation Thickness Calculation, Insulation & Corrosion Protection, Heat Exchanger & Boiler Insulation, Tanks & Vessels Insulation, Pipeline & Piping Insulation, Insulation Testing & Quality Assurance, Insulation Maintenance & Repair, Insulation Retrofitting, Impulse Tube Installation & Inspection, Parker Compression Fittings, Pipes & Fittings, PSV Inspection, Boiler Operation, Maintenance & Inspection, Root Cause Failure Analysis, Tank Design & Engineering, Tank Shell, Tanks & Tank Farms, Vacuum Tanks, Gas Turbine Operating & Maintenance, Diesel Engine, Engine Cycles, Governors & Maintenance, Crankshafts & Maintenance, Lubrication System Troubleshooting & Maintenance, Engines/Drivers, Motor Failure Analysis & Testing, Motor Predictive Maintenance, Engine Construction & Maintenance, HP Fuel Pumps & Maintenance, Fired Equipment Maintenance, Combustion Techniques, Process Heaters, Glass Reinforced Epoxy (GRE), Glass Reinforced Pipes (GRP), Glass Reinforced Vent (GRV), Mechanical Pipe Fittings, Flange Joint Assembly, Adhesive Bond Lamination, Butt Jointing, Joint & Spool Production, Isometric Drawings, Flange Assembly Method, Fabrication & Jointing, Jointing & Spool Fabrication, CAESAR, Pipe Stress Analysis, Pipe Cuttings, Flange Bolt Tightening Sequence, Hydro Testing, Pump Technology, Fundamentals of Pumps, Pump Selection & Installation, Centrifugal Pumps & Troubleshooting, Reciprocating & Centrifugal Compressors, Screw Compressor, Compressor Control & Protection, Gas & Steam Turbines, Turbine Operations, Gas Turbine Technology, Valves, Process Control Valves, Bearings & Lubrication, Advanced Machinery Dynamics, Rubber Compounding, Elastomers, Thermoplastic, Industrial Rubber Products, Rubber Manufacturing Systems, Heat Transfer, Vulcanization Methods, Process Plant Shutdown & Turnaround, Professional Maintenance Planner, Advanced Maintenance Management, Maintenance Optimization & Best Practices, Maintenance Auditing & Benchmarking, Material Cataloguing, Reliability Management, Rotating Equipment, Energy Conservation, Energy Loss Management in Electricity Distribution Systems, Energy Saving, Thermal Power Plant Management, Thermal Power Plant Operation & Maintenance, Heat Transfer, Machine Design, Fluid Mechanics, Heating & Cooling Systems, Heat Insulation Systems, Heat Exchanger & Cooling Towers, Mechanical Erection, Heavy Rotating Equipment, Material Unloading & Storage, Commissioning & Start-Up. Further, he is also well-versed in MS project & AutoCAD, EPC Power Plant, Power Generation, Combined Cycle Powerplant, Leadership & Mentoring, Project Management, Strategic Planning/Analysis, Construction Management, Team Formation, Relationship Building, Communication, Reporting and Six Sigma. He is currently the Project Manager wherein he is managing, directing and controlling all activities and functions associated with the domestic heating/cooling facilities projects.

During his life career, Mr. Rovas has gained his practical and field experience through his various significant positions and dedication as the EPC Project Manager, Field Engineer, Thermal Insulation Engineer, Mechanical Engineer, Preventive Maintenance Engineer, Senior Thermal Insulation Technician, Researcher, Instructor/Trainer, Telecom Consultant and Consultant from various companies such as the Podaras Engineering Studies, Metka and Diadikasia, S.A., Hellenic Petroleum Oil Refinery and COSMOTE.

Mr. Rovas has a Master's degree in Energy Production & Management and Mechanical Engineering from the National Technical University of Athens (NTUA), Greece. Further, he is a Certified Instructor/Trainer, a Certified Maintenance and Reliability Professional (CMRP) from the Society of Maintenance & Reliability Professionals (SMRP), Certified Project Management Professional (PMI-PMP), Certified Six Sigma Black Belt, Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), Certified Construction Projects Contractor, Certified Energy Auditor and a Chartered Engineer. Moreover, he is an active member of American Society for Quality, Project Management Institute (PMI), Body of Certified Energy Auditors and Technical Chamber of Greece. He has further received various recognition and awards and delivered numerous trainings, seminars, courses, workshops and conferences internationally.

ME0384 - Page 4 of 11

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 07 th of December 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to HVAC Systems</i> <i>HVAC (Heating, Ventilation, and Air Conditioning) Systems</i> • <i>Importance of</i> <i>HVAC Systems in Residential, Commercial, and Industrial Buildings</i> • <i>Basic</i> <i>Principles of Heat Transfer and Thermodynamics</i> • <i>Components of an HVAC</i> <i>System: Heating Units, Cooling Units, Air Handlers, Ductwork, and Controls</i>
0930 - 0945	Break
0945 - 1100	<i>Heating Systems</i> <i>Types of Heating Systems: Furnaces, Boilers, Heat Pumps</i> • <i>Heat Generation</i> <i>and Distribution Methods</i> • <i>Energy Sources for Heating: Gas, Oil, Electricity</i> • <i>Heating System Components: Burners, Heat Exchangers, Fans, and Controls</i>
1100 – 1215	Cooling Systems Types of Cooling Systems: Air Conditioners, Chillers • Refrigeration Cycle and its Components: Compressors, Condensers, Expansion Valves, Evaporators • Refrigerants and their Environmental Impact • Cooling System Controls and Maintenance
1215 - 1230	Break
1230 - 1330	Ventilation Systems Importance of Ventilation in Maintaining Indoor Air Quality • Natural Ventilation vs. Mechanical Ventilation • Ventilation System Components: Fans, Ductwork, Air Filters • Ventilation Rates and Standards
1330 - 1420	<i>Air Distribution Systems</i> <i>Types of Air Distribution Systems: Ducted Systems, Ductless Systems</i> • <i>Ductwork Design and Layout</i> • <i>Airflow Calculations and Balancing</i> • <i>Air</i> <i>Registers, Diffusers, and Grilles</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

ME0384 - Page 5 of 11

Day 2:	Monday, 08 th of December 2025
0730 - 0930	Controls & Automation
	HVAC System Controls: Thermostats, Sensors, Actuators • Control Strategies:
	On/Off Control, Proportional Control, PID Control • Building Automation
	Systems (BAS) • Energy Management and Optimization
0930 - 0945	Break
	Energy Efficiency & Sustainability
0945 – 1100	<i>Energy Efficiency Measures for HVAC Systems • Energy-saving Technologies:</i>
0943 - 1100	Variable Speed Drives, Heat Recovery Systems • HVAC System Maintenance
	and Optimization • Green Building Standards and Certifications
	Indoor Air Quality
1100 – 1215	Factors Affecting Indoor Air Quality • Pollutant Sources and their Health
1100 - 1215	Effects • Air Filtration and Purification Systems • Ventilation Strategies for
	Improving Indoor Air Quality
1215 – 1230	Break
	Load Calculation & System Sizing
1230 - 1330	Load Calculation Methods • Factors Influencing Heat Gain and Heat Loss in
1230 - 1330	Buildings • Sizing HVAC Equipment Based on Load Calculations •
	Equipment Selection and Efficiency Considerations
	Installation & Commissioning
1330 - 1420	HVAC System Installation Best Practices • Commissioning Process and its
1550 - 1420	Importance • Testing and Balancing Procedures • Start-up and Performance
	Verification
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Tuesday, 09 th of December 2025
0730 - 0930	Maintenance & Troubleshooting
	<i>Preventive Maintenance Tasks for HVAC Systems</i> • <i>Troubleshooting Common</i>
	HVAC Problems • Safety Precautions during Maintenance and Repairs •
	Documentation and Record-keeping
0930 - 0945	Break
	Hydronic Systems
0945 – 1100	Hydronic Heating and Cooling Systems • Components of Hydronic Systems:
	Boilers, Pumps, Piping, and Valves • Balancing and Zoning in Hydronic
	Systems • Maintenance and Optimization of Hydronic Systems
1100 - 1215	Air Conditioning Systems
	Types of Air Conditioning Systems: Central Air Conditioners, Split Systems,
	Packaged Units • Air Distribution in Air Conditioning Systems • System
	Controls and Refrigerant Charging • Troubleshooting Common Air
	Conditioning Issues
1215 – 1230	Break
1230 - 1330	Ductwork Design & Installation
	Ductwork Design Principles: Pressure Losses, Air Velocity, Duct Sizing •
	Duct Materials and Insulation • Duct Sealing and Leakage Testing • Airflow
	Measurement and Balancing Techniques

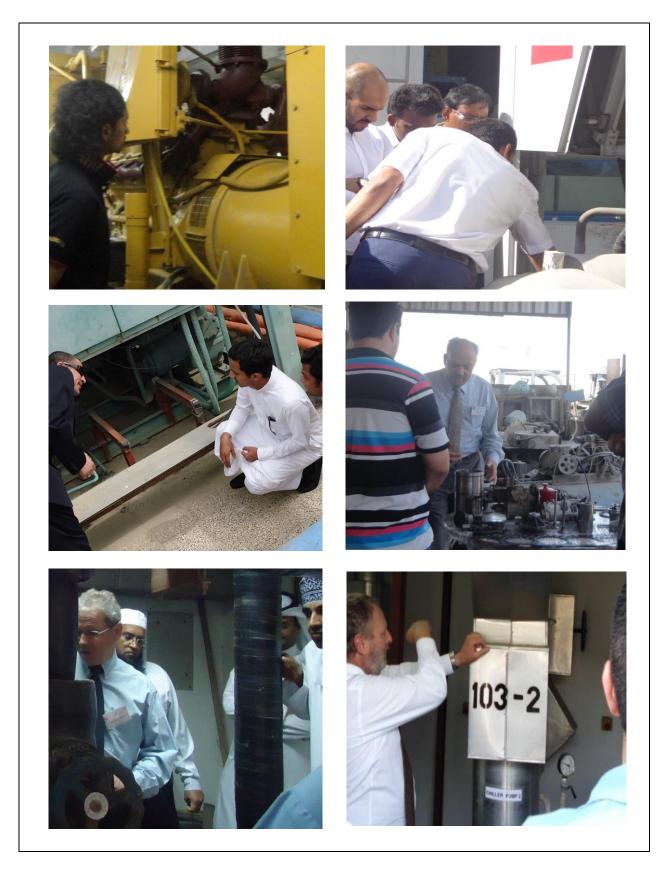
ME0384 - Page 6 of 11

1330 - 1420	Building Energy Management SystemsBuilding Energy Management Systems (BEMS)• Components andFunctionality of BEMS• Energy Monitoring and Optimization throughBEMS• Integration of HVAC Systems with BEMS
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Wednesday, 10 th of December 2025
0730 - 0930	Advanced HVAC Technologies
	Emerging Trends in HVAC Technology • Energy-efficient HVAC Equipment
	and Systems • Smart HVAC Controls and Connectivity • Integration of
	Renewable Energy Sources with HVAC Systems
0930 - 0945	Break
	Retrofitting & Upgrading HVAC Systems
0945 – 1100	Assessment of Existing HVAC Systems • Energy-saving Opportunities in
0040 - 1100	Retrofit Projects • Upgrading and Optimizing HVAC Equipment • Financial
	and Environmental Considerations in Retrofitting
	Energy Auditing & Performance Evaluation
1100 – 1215	Energy Auditing • Energy Audit Process and Methodologies • Performance
	<i>Evaluation of HVAC Systems</i> • <i>Energy-saving Opportunities through Audits</i>
1215 – 1230	Break
	Refrigerants & Environmental Considerations
1230 – 1330	Environmental Impact of Refrigerants • Transitioning to Low-GWP (Global
1250 - 1550	Warming Potential) Refrigerants • Refrigerant Management and Leak
	Detection • Compliance with Regulations and Standards
	HVAC System Controls & Integration
1330 – 1420	Advanced Control Strategies for HVAC Systems • Integration of Multiple
1330 - 1420	HVAC Systems • Communication Protocols and Interfaces • Demand
	Response and Load Management
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

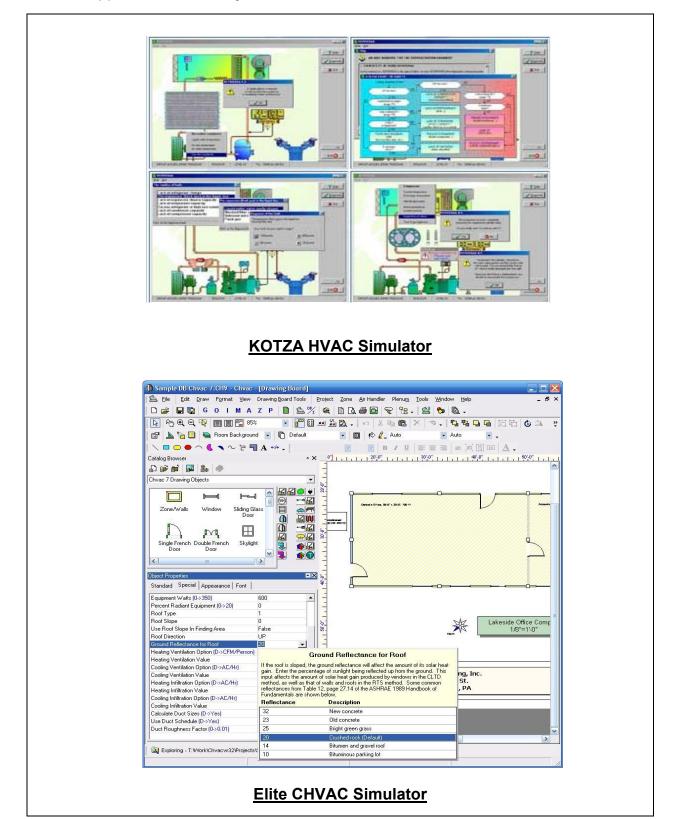
ME0384 - Page 7 of 11

Day 5:	Thursday, 11 th of December 2025
0730 - 0930	Commissioning & Retro-commissioning
	Commissioning Process for New HVAC Systems • Retro-commissioning of
	<i>Existing HVAC Systems</i> • <i>Performance Testing and Verification</i> • <i>Continuous</i>
	Commissioning for Ongoing Optimization
0930 - 0945	Break
	Energy Codes & Standards
0945 – 1100	Energy Codes and Standards related to HVAC Systems • ASHRAE Standards
0040 - 1100	and Guidelines • Compliance Requirements and Certification Programs •
	Impact of Energy Codes on HVAC System Design and operation
	Maintenance & Service Contracts
1100 – 1215	Importance of Regular Maintenance for HVAC systems • Components of a
1100 - 1215	Maintenance Plan • Service Contracts and Agreements • Troubleshooting and
	Repair Procedures
1215 – 1230	Break
	Building Automation & Control Systems (BACS)
1230 – 1300	Building Automation and Control Systems • Integration of HVAC Systems
1230 - 1300	with BACS • Remote Monitoring and Control Capabilities • Energy
	Optimization through BACS
	HVAC System Life Cycle Analysis
1300 - 1345	Life Cycle Assessment (LCA) of HVAC Systems • Environmental Impact of
1500 - 1545	HVAC System Components • Evaluating Energy Consumption and Emissions
	Designing for Sustainability and Life Cycle Cost Analysis
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course



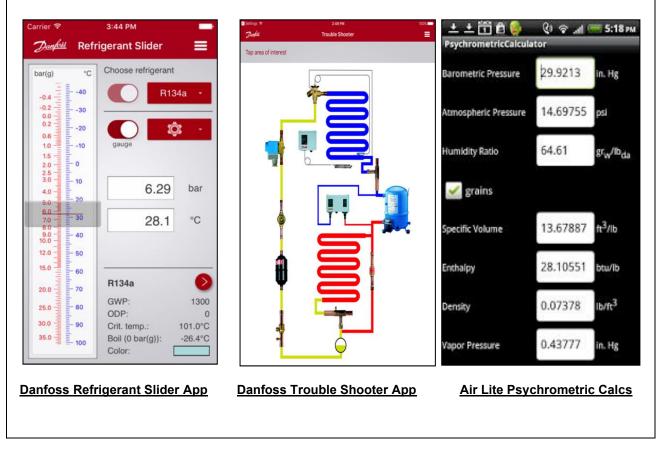
ME0384 - Page 8 of 11

Practical Sessions/Site Visit


ME0384 - Page 9 of 11

Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Elite CHVAC Simulator", "KOTZA HVAC Simulator", "Danfoss Refrigerant Slider App", "Danfoss Trouble Shooter App" and "Air Lite Psychrometric Calcs".



ME0384 - Page 10 of 11

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

ME0384 - Page 11 of 11

