

COURSE OVERVIEW ME0100 Valves Troubleshooting & Maintenance

Course Title

Valves Troubleshooting & Maintenance

Course Date/Venue

April 05-09, 2026/Boardroom 2, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

ME0100

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Practical sessions will be organized during the course using our state-of-the-art simulators and our cutting-edge Virtual Reality (VR) and Augmented Reality (AR) technologies to provide participants with a highly immersive and interactive learning experience.

This course is designed to provide participants with a detailed and up-to-date overview of Valve Selection, Installation & Maintenance. It covers the lubrication fitting and categorizing valves based on their function; the valve symbols, hydraulic pneumatic valves, motor, cylinders and directional control valves; the solenoid valve, typical valve and other valve designs; the various types of pressure control valves, check valves and control valve; and the characteristics of valve and control valve selection and sizing.

Further, the course will also discuss the control valve performance, process considerations, actuators and positioners; the fundamentals of pressure relief devices including the advantages and disadvantages of conventional valve and balanced bellows valve; the piston type pilot operated safety relief valve; the wetted area, heat absorption, vaporization rate and relief vent area; the causes of chatter, staggered PSV's and valve critical inspection, maintenance and testing; and the PRV repair and non-destructive testing including disc dismantling, assembly and disassembly.

During this interactive course, participants will learn the lapping procedure, grinding, assembly, valve sealing, installation, maintenance, troubleshooting and galling; the common valve problems, potential causes and water hammer; the valve testing and sealing, PRV adjustments, digital communications, cryogenic valves selection and proof testing and diagnostics; the characteristics of steam trap; and the online testing, calculation method, measurement method and visual inspection.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on valve selection, installation, upgrading, inspection, maintenance, repair and troubleshooting
- Identify lubrication fitting and categorize valves based on their function
- Discuss valve symbols, hydraulic pneumatic valves, motor, cylinders and directional control valves
- Recognize solenoid valve, typical valve and other valve designs
- Identify the various types of pressure control valves, check valves and control valve
- Describe the characteristics of valve and apply control valve selection and sizing
- Discuss control valve performance, process considerations, actuators and positioners
- Explain the fundamentals of pressure relief devices including the advantages and disadvantages of conventional valve and balanced bellows valve
- Recognize the piston type pilot operated safety relief valve as well as determine wetted area, heat absorption, vaporization rate and relief vent area
- Discuss the causes of chatter and staggered PSV's and apply valve critical inspection, maintenance and testing
- Carryout PRV repair and non-destructive testing including disc dismantling, assembly and disassembly
- Apply lapping procedure, grinding and assembly as well as valve sealing, installation, maintenance, troubleshooting and galling
- Identify the common valve problems, potential causes and water hammer
- Employ valve testing and sealing, PRV adjustments, digital communications, cryogenic valves selection and proof testing and diagnostics
- Discuss the characteristics of steam trap and apply online testing, calculation method, measurement method and visual inspection

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive “Haward Smart Training Kit” (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version of the course materials conveniently saved in a Tablet PC.**

Who Should Attend

This course provides an overview of all significant aspects and considerations of valve selection, installation, upgrading, inspection, maintenance, repair and troubleshooting for maintenance engineers, application engineers, inspection engineers, mechanical engineers, under-development engineers, electrical/electronics engineers, control systems and instrumentation engineers, production engineers, wellhead and drilling engineers and other technical staff.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

10% Practical Workshops & Work Presentations

10% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

30% VR/AR Hands-on Practical Application

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate +VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council for Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units (CEUs)** in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Andrew Ladwig is a **Senior Process & Mechanical Maintenance Engineer** with over **25 years** of extensive experience within the **Oil & Gas, Refinery, Petrochemical & Power** industries. His expertise widely covers in the areas of **Valves, Safety Relief Valves, Strainers & Steam Traps, Valve Selection, Operation, Control, Maintenance & Troubleshooting, Ammonia Manufacturing & Process Troubleshooting, Distillation Towers, Crude Oil Distillation, Ammonia Storage & Loading Systems, Operational Excellence in Ammonia Plants, Fertilizer Storage Management (Ammonia & Urea), Fertilizer Manufacturing Process Technology, Sulphur Recovery, Phenol Recovery & Extraction, Refining Process & Petroleum Products, Refinery Planning & Economics, Hydrotreating & Hydro-processing, Separators in Oil & Gas Industry, Gas Testing & Energy Isolations, Industrial Liquid Mixing, Extractors, Fractionation, Water Purification, Water Transport & Distribution, Environmental Emission Control, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Performance, Plant Startup & Shutdown, Process Troubleshooting Techniques and Oil & Gas Operation/Surface Facilities.** Further, he is also well-versed in **Rotating Machinery (BRM), Rotating Equipment** Operation & Troubleshooting, Root Cause Analysis (RCA), **Process Plant Shutdown, Turnaround & Troubleshooting, Planning & Scheduling Shutdowns & Turnarounds, Optimizing Equipment Maintenance & Replacement Decisions, Maintenance Planning & Scheduling, Material Cataloguing, Maintenance, Reliability & Asset Management Best Practices, Storage Tanks Operations & Measurements, Tank Inspection & Maintenance, Pressure Vessel Operation, Flare & Relief System, Flaring System** Operation, **PSV** Inspection & Maintenance, **Centrifugal & Reciprocating Compressor, Screw Compressor** Troubleshooting, **Heat Exchanger** Overhaul & Testing, **Pipe Stress Analysis, Control Valves & Actuators, Vent & Relief System, Centrifugal & Reciprocating Pump** Installation & Repair, **Heat Exchanger** Troubleshooting & Maintenance, **Steam Trapping & Control, Control & ESD** System and Detailed Engineering Drawings, Codes & Standards.

During his career life, Mr. Ladwig has gained his practical experience through his various significant positions and dedication as the **Mechanical Engineer, Project Engineer, Reliability & Maintenance Engineer, Maintenance Support Engineer, Process Engineer, HSE Supervisor, Warehouse Manager, Quality Manager, Business Analyst, Senior Process Controller, Process Controller, Safety Officer, Mechanical Technician, Senior Lecturer** and **Senior Consultant/Trainer** for various companies such as the Sasol Ltd., Sasol Wax, Sasol Synfuels, just to name a few.

Mr. Ladwig has a **Bachelor's** degree in **Chemical Engineering** and a **Diploma** in **Mechanical Engineering**. Further, he is a **Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)** and has delivered various trainings, workshops, seminars, courses and conferences internationally.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 05th of April 2026

0730 – 0800	Registration & Coffee
0800 – 0815	Welcome & Introduction
0815 – 0830	PRE-TEST
0830 – 0900	Lubrication Fitting Identification Bearing Lubrication Fitting • Packing Injection Fitting • Drain Port/Cavity Lube Port • Seal Sealant Injection Port
0900 – 0930	Valves can be Broadly Categorized Based on their Function as: Stop (Isolation) Valves • Regulating Valves • Back-Flow Prevention Valves • Pressure-Relief Valves
0930 – 0945	Break
0945 – 1015	Working Fluid Liquid • Gas • Solids
1015 – 1100	Manual Valves Classification of Valve on their Operating Way • Valve Symbols • Rotating Valves • Plug Valves • Ball Valves • Butterfly Valves • Globe Valves • Gate Valves • Diaphragm Valve Components • Diaphragm Valve Action • Flexible Valves • Pinch Valves • Solenoid Valve • Foot Valve • Valve Characterization
1100 – 1130	Hydraulic Pneumatic Valves Fixed Displacement Hydraulic Pump • Variable Displacement Hydraulic Pump
1130 – 1200	Motors Pneumatic Motor • Rotary Actuator
1200 – 1230	Cylinders Single Acting Cylinder • Double Acting Cylinders
1230 – 1245	Break
1245 – 1330	Cylinders with Cushions Single Fixed Cushion • Double Fixed Cushion • Single Adjustable Cushion • Double Adjustable Cushion
1330 – 1420	Directional Control Valves Electro-Hydraulic Servo Valve • Manual Control • Electrical Control • Flow Control Valve
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2: Monday, 06th of April 2026

0730 – 0830	What is a Coil & How Does it Work? How Does a Solenoid Valve Work • Style • Type • Design • Operators • Actuator Control
0830 – 0930	Typical Valve Poppet Valves • Spool Valves • Spool Types • Disc Seals

0930 – 0945	Break
0945 – 1030	<p>Other Valve Designs</p> <p>Pressure Switches • Logic "or"/"and" Shuttle Valve • Flow Regulator • Banjo Flow Regulator • Quick Exhaust Valve • Solenoid Valves • Principle of Operation • What Causes Solenoids to Fail</p>
1030 – 1100	<p>Pressure Control Valves</p> <p>Types of Pressure Control Valves • Pressure Relief Valve (PRV) • Complete Circuit • Direct Relief Valve Performance • Pilot Operated Relief Valve • Unloading Valve • Sequence Valve • Pressure-Reducing Valve • Counterbalance Valve • Safety Valve • How Failures Occur in Hydraulics Systems • Root Cause of Hydraulic Failures • Known Best Maintenance Practices "Hydraulics"</p>
1100 – 1130	<p>Check Valves</p> <p>Operational Detail • The Main Types of Check Valves • Selection Criteria</p>
1130 – 1200	<p>Control Valve Types</p> <p>Rotary Valves • Butterfly Valves • Eccentric Disk Valves • Bidirectional Tightness • Eccentric Rotary Plug Valves • Ball Valves • Plug Valves • Linear Valves • Globe Valves • Cage Valves</p>
1200 – 1230	<p>Control Valve Theory</p> <p>Definition of a Control Valve • Types of Energy • What Happens Inside a Control Valve • Choked Flow • Cavitation • Flashing</p>
1230 – 1245	Break
1245 – 1315	<p>Characteristics & Trim</p> <p>Valve Characteristics • Application Examples • Cavitation Control • Anti – Cavitation Trim • High Pressure Drop Applications • Low Noise Trim • Diffuser</p>
1315 – 1345	<p>Control Valve Selection</p> <p>Decision Criteria • Materials of Construction • Valve Characteristics • Actuator Considerations • Price Comparison • Selection Guidelines • Application Comparisons • Computer Sizing Programme</p>
1345 – 1420	<p>Control Valve Sizing</p> <p>General • Valve Coefficient (CV) • ISA Sizing Equation • Simplified Sizing Equation • Comparison of Valve Types • Turndown versus Rangeability</p>
1420 – 1430	<p>Recap</p> <p>Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow</p>
1430	Lunch & End of Day Two

Day 3: Tuesday, 07th of April 2026

0730 – 0830	<p>Installed Gain as a Control Valve Sizing Criteria</p> <p>Control Valve Characteristics • Inherent Characteristic • Installed Characteristic & Gain • Selecting the Right Pump</p>
0830 – 0930	<p>Control Valve Performance</p> <p>Process Variability • Dead Time • Actuator / Positioner Design • Valve Response Time • Valve Type & Characterisation • Valve Sizing</p>
0930 – 0945	Break
0945 – 1030	<p>Process Considerations</p> <p>End Connections • Face to Face Criteria • Materials Selection • Modes of Failure • Leakage Rates • International Standards</p>

1030 – 1100	Actuators & Positioners Types of Actuators • Linear Actuators • Rotary Actuators • Actuator Forces • Positioners • Fail Safe Systems
1100 – 1130	Accessories Auxiliary Handwheels • Pressure Regulators • Lock-Up Valves • ON-OFF Valve • Position Transmitters • Volume Booster • Limit Switches • Solenoid Valves
1130 – 1230	Fundamentals of Pressure Relief Devices What is the Hazard? • What are Relief Events? • Potential Lines of Defense • What is a Relief System? • Why Use a Relief System? • Pressure Relief Devices • Pressure Terminology • Superimposed Back Pressure • Built-Up Back Pressure • Code Requirements • Relief Design Methodology • Locating Reliefs – Where? • Choosing Relief Types • General Types of Safety Relief Valve Design • Conventional Spring-Loaded Safety Relief Valve • Advantages/Disadvantages Conventional Valve • Balanced Bellows Spring Loaded Safety Relief Valve • Advantages/Disadvantages Balanced Bellows Valve
1230 – 1245	Break

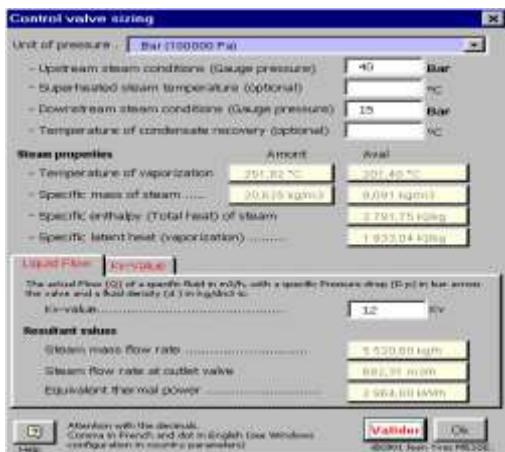
Day 4: Wednesday, 08th of April 2026

0730 – 0830	Valve Critical Inspections Valve Maintenance • What is Preventative Maintenance? • When to Use Preventative Maintenance & Predictive Maintenance • Objectives of an Inspection Job • PRV Repair Flow Chart • Inspector's Role • Measurement & Test Equipment • Inspection Methods • PRV Spindle Inspection Points • Disk & Nozzle Inspection • PRV Guide & Disc Holder • PRV Spring Inspection Points • Spring Rate • 900 Series Disc Criteria Data Sheet • 6000 Series • Sample Traveler • Critical Inspection
0830 – 930	PRV Repair & Non-Destructive Examination Pressure Relief Valve Repair • Critical Parts • Nozzle & Disc • Spring Adjusting Ring • Parts Providing Alignment • Lifting Devices • Safety Valve to Repair
0930 – 0945	Break
0945 – 1030	Check Tools Designated Use • V-Block • Dismantling Instructions for Type 526 API • Disc Disassembly with Sealing Plate • Removing the Studs from the Body • Execution • Measures & Facing Profile • Surface Quality • Nondestructive Examination • Preparation for Valve Assembly • Assembly of Type 526 • Assembly of Disc Assembly • Assembly of the Adjusting Screw • Adjusting the Set Pressure • Body and Bonnet Connection
1030 – 1130	Lapping, Grinding & Assembly Surface Quality • Lapping Objectives • Two Critical Elements of PRV Operation • Purpose of Lapping • Balance of Lapping • Ring Laps • Lapping Materials • Cleanliness • Lap Selection • Nozzle Seat Width • PRV Lapping Procedure • Glass Plate • Technical Requirements • Technical Illustration • Monocrystalline Diamond Powder • Designated Use • Technical Requirements • Technical Illustration • Re-Lapping with a Glass Plate • Re-Lapping the Nozzle and the Disc • PRV Bearing Points • Assembly Objectives • Assemblers Responsibility • Assembly Operation • Sample Traveler

1130 – 1200	<p>Valve Sealing Solutions</p> <p>National Emission Standards for Equipment Leaks • Valve Sealing Solutions • Non-Asbestos Valve Sealing System • Electric Power Research Institute (EPRI) • Causes of Valve Leakage • Volume Loss • Valve Design • Packing Material • Pressure & Temperature • Temperature Cycling • Valve Actuation • Horizontally Mounted Valves • Valve Condition • Pitting • Maintenance Practices • Gland Packing • Second Service Category • Liveload • Balancing Control and Low Emissions</p>
1200 – 1230	<p>Operational Issues</p> <p>General Review • Installation • Maintenance • Troubleshooting • Corrosion • Galling</p>
1230 – 1245	<p>Break</p>
1245 – 1315	<p>Common Valve Problems</p> <p>Water Hammer Effects • High Noise Levels • Noise Attenuation • Fugitive Emissions</p>
1315 – 1345	<p>Control Valve Failures Potential Causes</p> <p>Physical Failures • Velocity Problems • Erosion by Cavitation • Erosion by Abrasion • Noise • Vibration</p>
1345 – 1420	<p>Water Hammer</p> <p>Where Water Hammer Occurs • Conditions Causing Water Hammer • Hydraulic Shock • Thermal Shock • Differential Shock • Unsteady Flow in Pipes • Water Hammer Phenomenon in Pipelines • Some Typical Damages • Propagation of Water Hammer Pressure Wave • Analysis of Water Hammer Phenomenon</p>
1420 – 1430	<p>Recap</p> <p>Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow</p>
1430	<p>Lunch & End of Day Four</p>

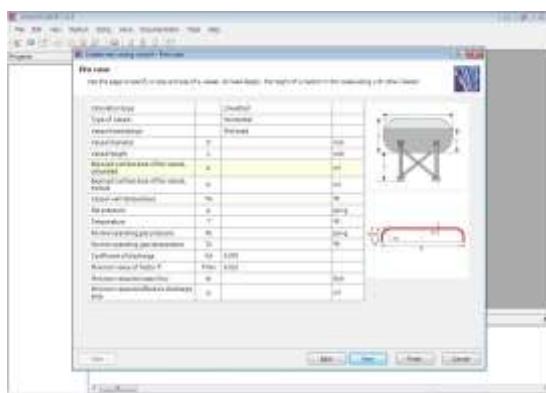
Day 5: Thursday, 09th of April 2026

0730 – 0830	<p>Valve Testing & Sealing</p> <p>Testing Objectives • ASME Requirements • PRV Testing & Adjustments • Testing & Sealing • Definition of Set Pressure • Liquid Test – Definition of Open • PRV Set Pressure on Liquid • Above Opening Pressure • Maximum Overpressure 110% of Set Pressure • Air Test PRV • Reaction Force • ASME Code Requirement for PRV Seat Tightness Testing • API 527 • PRV Adjustments • Two Ring/One Ring Design Ring Setting Chart • Sealing Adjustments • Sample Traveler • Field Testing Advice • Auxiliary Lifting Devices On Site Safety Valves Testing Schedule • Safety Valves Test Schedule for Boilers</p>
0830 – 0930	<p>Field Communications</p> <p>Analogue Signals • Digital Communications • Fieldbus Technologies</p>
0930 – 0945	<p>Break</p>
0945 – 1015	<p>Cryogenic Valves</p> <p>Selection of Cryogenic Valves • Material Considerations • Standards & Testing</p>
1015 – 1045	<p>Fire Safe Valves</p> <p>Requirements • Sealing & Leakage • Design • Standards & Testing • Examples</p>



1045 – 1115	<p>Strainers</p> <p>Y-Type Strainers • Basket Type Strainers • Strainer Screens</p>
1115 – 1145	<p>Proof Testing & Diagnostics</p> <p>Safety Instrumented Systems (An Overview) • Proof Testing • Partial Valve Stroking • Diagnostics</p>
1145 – 1230	<p>Steam Traps</p> <p>Characteristics of Steam • Steam Trap • Typical Steam Generation-Distribution-Recovery Diagram • Mechanical Steam Traps • Inverted Bucket Steam Traps • Float & Thermostatic Steam Traps • Thermostatic Steam Traps • Bimetallic Steam Traps • Bellows Steam Traps • Thermodynamic Steam Traps • Disc Type Steam Traps • Orifice Type Steam Traps • Steam Trap Surveys: Methods-Frequency • Methods of Detection • Recommended Steam Trap Survey Frequency • Rules of Thumb When Conducting Steam Trap Projects</p>
1230 – 1245	Break
1245 – 1315	<p>Online Testing</p> <p>Pressures' Scales • Calculation's Method • Measurement's Method • Calculation's Example • Graph's Example • Graph Analysis • Fully Explosion Proof Equipment • Equipment Used • Visual Inspection • Test Report • Some Fluids with which We Worked • Online Safety Valve Testing • Approved Technology • Certified Contractor • Advantages of the on-Line Safety Valve Testing • Correct Sizing of the Outline Line</p>
1315 – 1345	<p>Valves for Control of Steam Flow Rate</p> <p>What Do the Valves Do? • No Load Vs Full Load • Mounting of Valves • Why are So Many Valves Used? • The Full Load Conditions • Three Important Parameters • Pressure Ratio • Steam Path • Main Steam System • Full Load Conditions: A Case Study • Variation of Initial Pressure, Main Steam Temperature, Reheat Steam Temperature & Condenser Vacuum • The Loss with the Exit Velocity • Condenser Pressure Ratio</p>
1345 – 1400	<p>Course Conclusion</p> <p>Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course</p>
1400 – 1415	POST-TEST
1415 – 1430	<i>Presentation of Course Certificates</i>
1430	<i>Lunch & End of Course</i>

Simulators (Hands-on Practical Sessions)


Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art “Valve Sizing Software”, “Valve Software 3.0”, “Valvestar 7.2 Software” and “PRV²SIZE Software” and VR/AR Applications.


Valve Sizing Software

Valve Software 3.0

Valvestar 7.2 Software

PRV²SIZE Software

Virtual Reality (VR) and Augmented Reality (AR) Practical Sessions

Practical sessions will be organized during the course using cutting-edge Virtual Reality (VR) and Augmented Reality (AR) technologies to provide participants with a highly immersive and interactive learning experience. Through VR headsets and AR-enabled devices, delegates will be able to simulate real-world scenarios in a safe and controlled virtual environment, allowing them to practice the theories and techniques learned in class. Participants will engage in realistic, hands-on exercises such as operating equipment, performing inspections, troubleshooting systems and responding to simulated incidents that closely replicate actual field conditions. This advanced training approach enhances understanding, improves decision-making skills and builds confidence by bridging the gap between theoretical knowledge and real-world application.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org