

COURSE OVERVIEW DE0128 Gas Lift & ESP Operations & Optimization

Course Title

Gas Lift & ESP Operations & Optimization

Course Date/Venue

Please see page 3

Course Reference

DE0128

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Gas Lift and ESP Operations and Optimization. It covers the artificial lift methods, gas lift and ESP; the advantages and disadvantages of each method; the factors to consider when selecting an artificial lift method; the gas lift and ESP design principles and system integration; the tubing size, injection pressure, and injection depth; the gas lift and ESP optimization techniques; troubleshooting common gas lift problems and ESP problems; the advantages and disadvantages of different integration methods; the monitoring and control techniques for artificial lift systems; and the types of sensors used to monitor gas lift and ESP performance.

During the interactive course, participants will learn the control strategies to optimize production and reduce downtime; the downhole equipment used in gas lift and ESP systems; the best practices for installation and maintenance of downhole and surface equipment; troubleshooting common downhole and surface problems; the safety considerations, environmental considerations, regulatory requirements and compliance; the emerging technologies and techniques for artificial lift, including digitalization and automation; the optimization techniques to increase efficiency and production; the best practices for field development planning, including reservoir modelling and production forecasting; and the economic analysis of artificial lift projects.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on gas lift and ESP operations and optimization
- Discuss artificial lift methods, gas lift and ESP including the advantages and disadvantages of each method and the factors to consider when selecting an artificial lift method
- Explain gas lift and ESP design principles and gas lift and ESP system integration
- Recognize tubing size, injection pressure, and injection depth
- Carryout gas lift and ESP optimization techniques as well as troubleshooting common gas lift problems and ESP problems
- Explain the advantages and disadvantages of different integration methods
- Employ monitoring and control techniques for artificial lift systems and the types of sensors used to monitor gas lift and ESP performance
- Apply control strategies to optimize production and reduce downtime including the downhole equipment used in gas lift and ESP systems
- Implement best practices for installation and maintenance of downhole and surface equipment and troubleshoot common downhole and surface problems
- Carryout safety considerations, environmental considerations, regulatory requirements and compliance
- Apply emerging technologies and techniques for artificial lift, including digitalization and automation
- Employ optimization techniques to increase efficiency and production
- Implement best practices for field development planning, including reservoir modelling and production forecasting as well as economic analysis of artificial lift projects

Exclusive Smart Training Kit - H-STK®

*Participants of this course will receive the exclusive “Haward Smart Training Kit” (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.*

Who Should Attend

This course provides an overview of all significant aspects and considerations of gas lift and ESP operations and optimization for petroleum, reservoir, mechanical and electrical engineers and other technical staff working with ESP systems.

Course Date/Venue

Session(s)	Date	Venue
1	April 20-24, 2026	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
2	June 29-July 03, 2026	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
3	August 30-September 03, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
4	October 11-15, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
5	December 13-17, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
6	January 04-08, 2027	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
7	February 15-19, 2027	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
8	March 21-25, 2027	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Fee

Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 8,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**.

Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Konstantin Zorbalas, MSc, BSc, is a **Senior Petroleum Engineer & Well Completions Specialist** with **30 years** of **offshore** and **onshore** experience in the **Oil & Gas, Refinery & Petroleum** industries. His wide expertise includes **OIP Estimation & Range of Uncertainty, Waterflood Management, Water Flooding, Water Flooding & Reservoir Sourcing Issues, Water Flooding, Reservoir Souring & Water Breakthrough, Well & Reservoir Management and Monitoring, Fishing Operations, Drilling & Work-Over Operations, Workover Best Practices, Well Testing, Completion Design & Operation, Well Stimulation and Workover, Well Stimulation & Workover Planning, Well Completion, Servicing & Work-Over Operations, Completions & Workover, HSE in Work-Over & Drilling Operations, Well Testing Completion & Workover, Basic Drilling, Completion & Workover Operations, Advanced Drilling, Completion & Workovers Fluids, Cementing Integrity Evaluation, Cementing Design, Cement Integrity Assurance & Evaluation, Basic Cementing (Operations) & Basic Acidizing, Advanced Cementing Technology, Casing & Cementing, Advanced Cementing & Stimulation, Artificial Lift Systems, New Technology in Artificial Lift Systems, Artificial Lift Methods, Crude Oil Artificial Lift Operations, Artificial Lift Systems, Artificial Lift & Challenges, Artificial Lift Systems & Optimization Technology, Production Optimization with Artificial Lift System, Well Integrity & Artificial Lift, Formation Damage & Flow Assurance Issues, Formation Damage Evaluation, Prevention, Remediation & Control, Formation Damage (Causes, Prevention & Remediation), Well Completion Design & Operations, Crude Oil Market, Oil Reserves, Global Oil Supply & Demand, Government Legislation & Oil Contractual Agreements, Oil Projects & Their Feasibility (Revenue and Profitability), Oil & Gas Exploration and Methods, Oil & Gas Extraction, Oil Production & Refining, Technology Usage in Industrial Security; Oil & Gas Economics Modelling Evaluation Decision Making & Risk Analysis, Economic Evaluation & Global Profitability Criteria, Petroleum Economics, Fluid Properties & Phase Behaviour (PVT), Workovers & Completions, Acidizing Application in Sandstone & Carbonate, Well Testing Analysis, Reserves Evaluation, Reservoir Fluid Properties, Reservoir Monitoring, Heavy Oil Technology, Applied Water Technology, X-mas Tree & Wellhead Operations & Testing, Artificial Lift Systems (Gas Lift, ESP, and Rod Pumping), Well Cementing, Well Completion Design, Slickline Operations, Cased Hole Logging and Production Logging. Further, he is actively involved in **Project Management** with special emphasis in production technology and field optimization, performing conceptual studies, economic analysis with risk assessment and field development planning. He is currently the **Senior Petroleum Engineer & Consultant** of **Abu Dhabi National Oil Company (ADNOC)** Group of companies wherein he is involved in the mega-mature fields in the Arabian Gulf, predominantly carbonate reservoirs; designing the acid stimulation treatments with post-drilling rigless operations; utilizing CT with tractors and DTS systems; and he is responsible for gas production and preparing for reservoir engineering and simulation studies, well testing activities, field and reservoir monitoring, production logging and optimization and well completion design.**

During his career life, Mr. Zorbalas worked as a **Senior Production Engineer, Well Completion Specialist, Production Manager, Project Manager, Technical Manager, Trainer, Technical Supervisor & Contracts Manager, Production Engineer, Production Supervisor, Production Technologist, Technical Specialist, Business Development Analyst, Field Production Engineer and Field Engineer**. He worked for many world-class oil/gas companies such as ZADCO, ADMA-OPCO, Oilfield International Ltd, Burlington Resources (later acquired by Conoco Phillips), MOBIL E&P, Saudi Aramco, Pluspetrol E&P SA, Wintershall, Taylor Energy, Schlumberger, Rowan Drilling and Yukos EP where he was in-charge of the **design and technical analysis** of a gas plant with capacity 1.8 billion m³/yr gas. His achievements include **boosting oil production 17.2% per year** since 1999 using **ESP and Gas Lift systems**.

Mr. Zorbalas has **Master's** and **Bachelor's** degrees in **Petroleum Engineering** from the **Mississippi State University, USA**. Further, he is an **SPE Certified Petroleum Engineer, Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)**, an active member of the Society of Petroleum Engineers (**SPE**) and has numerous scientific and technical publications and delivered innumerable training courses, seminars and workshops worldwide

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0745	Registration & Coffee
0745 – 0800	Welcome & Introduction
0800 – 0815	PRE-TEST
0815 – 0930	Introduction to Artificial Lift Artificial Lift Methods, Including Gas Lift and ESP • Advantages and Disadvantages of Each Method • Factors to Consider when Selecting an Artificial Lift Method
0930 – 0945	Break
0945 – 1030	Gas Lift Design & Optimization Gas Lift Design Principles, Including Tubing Size, Injection Pressure, and Injection Depth • Gas Lift Optimization Techniques, Including Simulation Software and Data Analysis • Troubleshooting Common Gas Lift Problems
1030 – 1230	ESP Design & Optimization ESP Design Principles, Including Pump Selection, Motor Sizing, and Cable Selection • ESP Optimization Techniques, Including Flow Rate Optimization and Performance Monitoring
1230 – 1245	Break
1245 – 1420	ESP Design & Optimization (cont'd) Troubleshooting Common ESP Problems
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830	Gas Lift & ESP System Integration Advantages and Disadvantages of Different Integration Methods
0830 – 0930	Gas Lift & ESP System Integration (cont'd) Case Studies and Best Practices for Integration
0930 – 0945	Break

0945 – 1230	Artificial Lift Monitoring & Control Monitoring and Control Techniques for Artificial Lift Systems • Types of Sensors Used to Monitor Gas Lift and ESP Performance
1230 - 1245	Break
1245 – 1420	Artificial Lift Monitoring & Control (cont'd) Control Strategies to Optimize Production and Reduce Downtime
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 – 0930	Downhole Equipment & Maintenance Downhole Equipment Used In Gas Lift and ESP Systems • Best Practices For Installation and Maintenance of Downhole Equipment
0930 – 0945	Break
0945 – 1030	Downhole Equipment & Maintenance (cont'd) Troubleshooting Common Downhole Problems
1030 – 1230	Surface Equipment & Maintenance Surface Equipment Used in Gas Lift and ESP Systems • Best Practices for Installation and Maintenance of Surface Equipment
1230 - 1245	Break
1245 – 1420	Surface Equipment & Maintenance (cont'd) Troubleshooting Common Surface Problems
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 – 0830	Safety & Environmental Considerations Safety Considerations for Gas Lift and ESP Operations • Environmental Considerations, Including Emissions and Water Usage
0830 – 0930	Safety & Environmental Considerations (cont'd) Regulatory Requirements and Compliance
0930 – 0945	Break
0945 – 1230	Advanced Topics in Artificial Lift Emerging Technologies and Techniques for Artificial Lift, Including Digitalization and Automation
1230 - 1245	Break
1245 – 1345	Advanced Topics in Artificial Lift (cont'd) Case Studies and Best Practices for Unconventional and Offshore Operations
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three



Day 5

0730 – 0830	Advanced Topics in Artificial Lift (cont'd) Future Trends in Artificial Lift
0830 – 0930	Artificial Lift Optimization & Field Development Planning Optimization Techniques to Increase Efficiency and Production
0930 – 0945	Break
0945 – 1230	Artificial Lift Optimization & Field Development Planning (cont'd) Best Practices for Field Development Planning, Including Reservoir Modeling and Production Forecasting
1230 - 1245	Break
1245 – 1345	Artificial Lift Optimization & Field Development Planning (cont'd) Economic Analysis of Artificial Lift Projects
1345 – 1400	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org