

COURSE OVERVIEW DE0148

Formation Damage, Remediation & Well Stimulation

Course Title

Formation Damage, Remediation & Well Stimulation

Course Date/Venue

Please see page 3

Course Reference

DE0148

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of formation damage, remediation and well stimulation. It covers the formation damage, field diagnosis and measurement of formation damage; the formation damage and pseudo-damage from well performance; the formation damage control and remediation as well as formation damage mitigation; the reservoir stimulation in petroleum production; and the formation characterization of well and reservoir testing.

During this interactive course, participants will learn the formation characterization of rock mechanics and well logs; the basics and mechanics of hydraulic fracturing; the fracturing fluid chemistry and proppants; the fracturing materials performance, fracture evaluation using pressure diagnostics and fracture treatment design; the fracturing operations, post-treatment evaluation and fractured well performance; the matrix treatments, fundamentals of acid stimulation and carbonate acidizing design; the matrix stimulation treatment evaluation; the causes and effects of sand production; and the sand control in open-hole completions, chemical consolidation methods and water control.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on formation damage, remediation and well stimulation
- Discuss formation damage, field diagnosis and measurement of formation damage
- Determine, identify characterize and evaluate formation damage and pseudo-damage from well performance
- Describe formation damage control and remediation as well as formation damage mitigation
- Employ reservoir stimulation in petroleum production and recognize the formation characterization of well and reservoir testing
- Identify the formation characterization of rock mechanics and well logs
- Describe the basics and mechanics of hydraulic fracturing as well as the fracturing fluid chemistry and proppants
- Carryout fracturing materials performance, fracture evaluation using pressure diagnostics and fracture treatment design
- Employ fracturing operations, post-treatment evaluation and fractured well performance
- Discuss matrix treatments, fundamentals of acid stimulation and carbonate acidizing design
- Apply matrix stimulation treatment evaluation and recognize the causes and effects of sand production
- Employ sand control in open-hole completions, chemical consolidation methods and water control

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of formation damage, remediation and well stimulation for petroleum engineers and petroleum industry professionals who are involved in the important activities of reservoir evaluation, development and management and for those who require invaluable skills in the application of the techniques described for the successful exploitation of oil and gas reservoirs.

Course Date/Venue

Session(s)	Date	Venue
1	May 03-07, 2026	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
2	June 07-11, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
3	August 02-06, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
4	September 06-10, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
5	January 03-07, 2027	Meeting Plus 9, City Centre Rotana, Doha, Qatar
6	February 07-11, 2027	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
7	March 14-18, 2027	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

Cairo	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 8,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Chris Kapetan, PhD, MSc, BSc, is a **Senior Drilling & Process Engineer** with over **30 years** of international experience within the **onshore** and **offshore oil and gas** industry. His wide experience covers **Asset Operational Integrity** for Operations, **Process Plant** Operations, Control & Troubleshooting, **Plant Shutdown System & Flare Systems**, **Heat Exchangers & Fired Heaters** Operation & Troubleshooting, **Gas Conditioning**, Treatment & Processing Technology, **Production Operations** in the Oil & Gas Fields & Surface Facilities, **LNG Process**, **Applied Process** Engineering Elements, **Production Control** Systems, Well Commissioning & Crude Oil Specifications, **Hydrogenation & Gasification** Technology, **Physical & Chemical Solvents**, Sulfide Stress Cracking (SSC), Hydrogen Induced Cracking (HIC), **Corrosion**, Steels & Alloys, **Fertilizer Manufacturing** Process Technology, **Fertilizer Storage Management** (Ammonia & Urea), **Process Calculation Methods**, **Directional Planning**, **Completion Design**, **Directional Surveying**, **Drilling Fluids**, **Matrix Acidizing**, **Hydraulic Fracturing**, **Well Completion** Design & Operation, **Cased Hole Formation Evaluation**, **Cased Hole Logs**, **Production Management**, **Drilling Operations**, **Directional Drilling**, **Gas Lift Operations**, **Petroleum Business**, **Petroleum Economics**, **Gas Lift Valve** Changing & Installation, **Horizontal & Multilateral Wells**, **Well Stimulation & Control** and **Workover Planning**, **Completions & Workover**, **Rig Sizing**, **Hole Cleaning & Logging**, **Well Completion**, **Servicing & Work-Over** Operations, **Practical Reservoir Engineering**, **X-mas Tree & Wellhead** Operations, Maintenance & Testing, **Advanced Petrophysics/Interpretation of Well Composite**, **Construction Integrity & Completion**, **Coiled Tubing Technology**, **Corrosion Control**, **Wireline & Coil Tubing**, **Pipeline Pigging**, **Corrosion Monitoring**, **Cathodic Protection**, Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), **Production Safety** and **Delusion of Asphalt**. Currently, he is the **Operations Manager** at **GEOTECH** and an independent **Drilling Operations Consultant** of various engineering services providers to the international clients as he offers his expertise in many areas of the **drilling discipline** and is well **recognized & respected** for his process and procedural expertise as well as ongoing participation, interest and experience in continuing to promote technology to producers around the world. Currently, he is the **Operations Consultant & the Technical Advisor** at **GEOTECH** and an independent **Drilling Operations Consultant** of various engineering services providers to the international clients as he offers his expertise in many areas of the **drilling & petroleum** discipline and is well **recognized & respected** for his process and procedural expertise as well as ongoing participation, interest and experience continuing to promote technology to producers around the world. Throughout his long career life, Dr. Chris has worked for many international companies and has spent several years **managing** technically **complex wellbore interventions** in both **drilling & servicing**. He is a **well-regarded** for his **process** and **procedural expertise**. Further, he was the **Operations Manager** at **ETP Crude Oil Pipeline Services** where he was fully responsible for optimum operations of crude oil pipeline, **workover** and **directional drilling**, **drilling rigs** and equipment, drilling of various geothermal deep wells and **exploration wells**. Dr. Chris was the **Drilling & Workover Manager & Superintendent** for **Kavala Oil** wherein he was responsible for supervision of drilling operations and **offshore exploration**, quality control of performance of **rigs**, **coiled tubing**, **crude oil** transportation via pipeline and abandonment of **well** as per the API requirements. He had occupied various key positions as the **Drilling Operations Consultant**, **Site Manager**, **Branch Manager**, **Senior Drilling & Workover Manager & Engineer**, **Drilling & Workover Engineer**, **Process Engineer**, **Operations Consultant** and **Technical Advisor** in several petroleum companies responsible mainly on an **offshore sour oil field** (under water flood and gas lift) and a gas field. Further, Dr. Chris has been a **Professor** of the **Oil Technology College**. Dr. Chris has **PhD** in **Reservoir Engineering** and a **Master's** degree in **Drilling & Production Engineering** from the **Petrol-Gaze Din Ploiesti University**. Further, he is a **Certified Surface BOP Stack Supervisor** of **IWCF**, a **Certified Instructor/Trainer**, a **Certified Trainer/Assessor/Internal Verifier** by the **Institute of Leadership & Management (ILM)** and has conducted numerous short courses, seminars and workshops and has published several technical books on **Production Logging**, **Safety Drilling Rigs** and **Oil Reservoir**.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	<i>Registration & Coffee</i>
0800 – 0815	<i>Welcome & Introduction</i>
0815 – 0830	PRE-TEST
0830 – 0930	<p>Overview of Formation Damage</p> <p>Common Formation Damage Problems, Factors & Mechanisms • Understanding & Mitigation of Formation Damage • Origin of Petroleum-Bearing Formations • Constituents of Sedimentary Rocks • Composition of Petroleum-Bearing Formations • Mineral Sensitivity of Sedimentary Formations • Mechanisms of Clay Swelling • Models for Clay Swelling • Cation Exchange Capacity • Shale Swelling & Stability</p>
0930 – 0945	<i>Break</i>
0945 – 1100	<p>Field Diagnosis & Measurement of Formation Damage</p> <p>Diagnosis and Evaluation of Formation Damage in the Field • Pseudo-Damage vs. Formation Damage • Measures of Formation Damage • Model-Assisted Estimation of Skin Factor • Model-Assisted Analysis of the Near-Wellbore Permeability Alteration Using Pressure Transient Data • Productivity Decline Caused by Mud Invasion into Naturally Fractured Reservoirs • Continuous Real Time Series Analysis for Detection and Monitoring Formation Damage Effects • Formation Damage Expert System</p>
1100 – 1230	<p>Determination of Formation Damage & Pseudo-Damage from Well Performance-Identification, Characterization & Evaluation</p> <p>Completion damage and Flow Efficiency • Formation Damage and Flow Efficiency • Formation Damage Assessment in the Field by Well Surveillance • Well-Testing Techniques, Reservoir Parameters, and Interpretation Methods • Components of the Total Skin Factor • Variable Skin Factor</p>
1230 – 1245	<i>Break</i>
1245 – 1330	<p>Formation Damage Control & Remediation</p> <p>Selection of Treatment Fluids • Clay Stabilization • Clay and Slit Fines • Effect of Drilling Fluids on Shale Stability • Bacterial Damage • Inorganic Scales • Organic Deposits • Mixed Organic/Inorganic Deposits • Formation damage Induced by Completion-Fluids and Crude-Oil Emulsions • Wettability Alteration and Emulsion and Water Blocks • Intense Heat Treatment • Sand Control • Well Stimulation • Recapitulation of the Methods For Formation Damage Mitigation • Sandstone and Carbonate Formation Acidizing • Water Injectivity of Management • Controlling the Adverse Side effects of Remedial Treatments</p>
1330 – 1420	<p>Formation Damage Mitigation</p> <p>Comprehensive Methodology for Mitigation of Formation Damage • Treatment Fluid Application Methods • Thermal and Hydraulic Coupling of Wellbore with Reservoir During Remedial Fluid Treatments Illustrated for Hydraulically Fractured Well Acidizing</p>
1420 – 1430	<p>Recap</p> <p>Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow</p>

1430

Lunch & End of Day One

Day 2

0730 – 0830	Reservoir Stimulation in Petroleum Production Introduction • Inflow Performance • Alterations in the Near-Wellbore Zone • Tubing Performance & NODAL* Analysis • Decision Process for Well Stimulation • Reservoir Engineering Considerations for Optimal Production Enhancement Strategies • Stimulation Execution
0830 – 0930	Formation Characterization: Well & Reservoir Testing Evolution of a Technology • Pressure Derivative in Well Test Diagnosis • Parameter Estimation from Pressure Transient Data • Test Interpretation Methodology • Analysis with Measurement of Layer Rate • Layered Reservoir Testing • Testing Multilateral & Multibranch Wells • Permeability Determination from a Fracture Injection Test
0930 – 0945	Break
0945 – 1100	Formation Characterization: Rock Mechanics Basic Concepts • Rock Behavior • Rock Mechanical Property Measurement • State of Stress in the Earth • In-situ Stress Management
1100 – 1230	Formation Characterization: Well Logs Depth • Temperature • Properties Related to the Diffusion of Fluids • Properties Related to the Deformation & Fracturing of Rock • Zoning
1230 – 1245	Break
1245 – 1420	Basics of Hydraulic Fracturing Overview of Hydraulic Fracturing • In-Situ Stress • Reservoir Engineering • Rock & Fluid Mechanics • Treatment Pump Scheduling • Economics & Operational Considerations
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 – 0830	Mechanics of Hydraulic Fracturing History of Early Hydraulic Fracture Modeling • Three-Dimensional & Pseudo-Three-Dimensional Models • Leakoff • Proppant Placement • Heat Transfer Models • Fracture Tip Effects • Tortuosity & Other Near-Well Effects • Acid Fracturing • Multilayer Fracturing • Pump Schedule Generation • Pressure History Matching
0830 – 0930	Fracturing Fluid Chemistry & Proppants Water-Base Fluids • Oil-Base Fluids • Acid-Based Fluids • Multiphase Fluids • Additives • Proppants • Execution
0930 – 0945	Break
0945 – 1100	Performance of Fracturing Materials Fracturing Fluid Characterization • Characterization Basics • Translation of Field Conditions to a Laboratory Environment • Molecular Characterization of Gelling Agents • Rheology • Proppant Effects • Fluids Loss
1100 – 1230	Fracture Evaluation Using Pressure Diagnostics Fundamental Principles of Hydraulic Fracturing • Pressure During Pumping • Analysis During Fracture Closure • Pressure Interpretation After Fracture

American Welding Society

	<i>Closure</i> • Numerical Simulation of Pressure: Combined Analysis of Pumping & Closing • Comprehensive Calibration Test Sequence
1230 – 1245	<i>Break</i>
1245 – 1420	Fracture Treatment Design Design Considerations • Geometry Modeling • Treatment Schedule • Multilayer Fracturing • Acid Fracturing • Deviated Wellbore Fracturing
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	<i>Lunch & End of Day Three</i>

Day 4

0730 – 0830	Fracturing Operations Completions • Perforating • Surface Equipment for Fracturing Operations • Bottomhole Pressure Measurement & Analysis • Proppant Flowback Control • Flowback Strategies • Quality Assurance & Quality Control • Health, Safety & Environment
0830 – 0930	Post-Treatment Evaluation & Fractured Well Performance Post-Treatment Fracture Evaluation • Factors Affecting Fractured Well Performance • Well Test Analysis of Vertically Fractured Wells • Prediction of Fractured Well Performance
0930 – 0945	<i>Break</i>
0945 – 1100	Introduction to Matrix Treatments Candidate Selection • Formation Damage Characterization • Stimulation Technique Determination • Treatment Design • Final Economic Evaluation • Execution • Treatment Evaluation
1100 – 1230	Fundamentals of Acid Stimulation Acid-Mineral Interactions • Sandstone Acidizing • Carbonate Acidizing
1230 – 1245	<i>Break</i>
1245 – 1420	Carbonate Acidizing Design Rock & Damage Characteristics in Carbonate Formations • Carbonate Acidizing with Hydrochloric Acid • Other Formulations • Treatment Design
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	<i>Lunch & End of Day Four</i>

Day 5

0730 – 0830	Matrix Stimulation Treatment Evaluation Derivation of Bottomhole Parameters from Wellhead Measurements • Monitoring Skin Effect Evolution During Treatment • Prouwost and Economides Method • Behenna Method • Inverse Injectivity Diagnostic Plot • Limitations of Matrix Treatment Evaluation Techniques • Treatment Response Diagnosis • Post-Treatment Evaluation
0830 – 0930	Causes & Effect of Sand Production The Geology of Sedimentary Formations • The Nature of Cohesive Failure and Contributing Issues • Terms that Describe Sanding Formations
0930 – 0945	<i>Break</i>
0945 – 1100	Sand Control in Open-Hole Completions

	<p>Fluids Related to Drill-In (Fluid Loss Control) • Sand Exclusion Devices • Vertical Open-Hole Completions</p>
1100 – 1230	<p>Chemical Consolidation Methods Consolidation Resins Used in Pre-Pack Screens • Epoxy Resin Consolidation Systems • Furan Resin Consolidation Systems</p>
1230 – 1245	Break
1245 – 1345	<p>Water Control Characteristics of Produced Water • Scale Removal • Controlling Scale Using Chemical Inhibitors • Sand & Other Suspended Solids • System Description • Equipment Description & Sizing Skim Tanks & Skim Vessels • Oil/Water/Sediment Coalescing Separators</p>
1345 – 1400	<p>Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course</p>
1400 – 1415	POST-TEST
1415 – 1430	<i>Presentation of Course Certificates</i>
1430	<i>Lunch & End of Course</i>

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org