

COURSE OVERVIEW DE0162 Electrical Submersible Pumps

Course Title

Electrical Submersible Pumps

Course Date/Venue

Please refer to page number 5

Course Reference

DE0162

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

Electrical Submersible Pump (ESP) is perhaps the most versatile and profitable piece of equipment in a petroleum company's arsenal. ESP is considered an effective and economical means of lifting large volume of fluids from great depths under a variety of well conditions. It has advantages over some other high volume methods since it can create a higher drawdown on the formation and achieve more production. ESP major problems are the gas interference and the sand production. Nevertheless, the ESP companies, in conjunction with the major oil companies, have gained considerable experience in producing high viscosity fluids from gassy wells, sandy wells and high temperature wells. With this experience and improved technology, wells that were once considered non-feasible and submersibles are now being pumped economically.

This course is designed to provide participants with a detailed and up-to-date overview on the application engineering of electrical submersible pumps. It covers the ESP systems and operations, head generation, impeller types and characteristics; the components of ESP system from surface to downhole sensor including their functions, limitations and operating principles; the equipment and accessories that make up the electric submersible pumping system; the main components of the ESP and their use and functions.

Further, the course will also discuss the pump, transformers, controllers, VSD functions and benefits; the wellhead, tubing cable, cable guards, motor lead cable and intake/gas separator; the equalizer/protector, motor and instrumentation; the ESP installation considerations and cautions of standards and non-standards applications; the ESP installation procedures, reservoir formation and well considerations; the installation cautions and limitations; the design of an ESP system to fit current and future well conditions; the sizing principles for ESP artificial lift design and diagnosis; the ESP design procedure, sensitivity analysis and mechanical and electrical considerations; the steps to correctly size an electric submersible pump example problem; the impact on well and reservoir of ESP operation and the use of Nodal™ analysis in ESP applications; the effects of gas on the performance of ESP; the amount of free gas present at the pump intake; the probability of gas interference and the appropriate measures to prevent gas locking; the problems sizing equipment for gassy wells and the ESP analysis and diagnostic; the diagnostic from installed instrumentation; and using diagnostic computer programs.

During this intellective course, participants will learn the effects of viscosity on the performance of submersible pumps; the example problem in an application of a field with heavy oil properties to predict pump and motor performance; the ESP monitoring and maintenance, ESP troubleshooting, repair of failed components and ESP isolation and shutdown; the controls for ESP systems including variable speed drives; the ESP instrumentation available in the industry; the SCADA system, telemetry, PLC, ESD, VSD and troubleshooting; the ESP failure analysis, DIFA procedures, ESP inspection and failure mode; the data, record keeping and data analysis; the effects of artificial lift and ESP on project economics; the data analysis and interpretation examples; the optimization of ESP applications to improve project economics; the prediction of ESP performance under varying well and reservoir conditions; the analysis and diagnosis of real field examples from participants; and the presentations, concluding remarks from teams and the latest advances on ESP technology.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on electrical submersible pumps - application engineering
- Discuss the description of all components of ESP system starting at surface to the downhole sensor describing their functions, limitations and operating principles
- Explain ESP installation considerations and cautions of standards and non-standards applications
- Discuss ESP analysis and diagnostic including VSD functions and benefits
- Employ ESP monitoring and maintenance as well as ESP failure analysis and DIFA procedures
- Carryout ESP systems and operation and discuss the principles of ESP operation, head generation, impeller types and characteristics
- Identify the equipment and accessories that make up the electric submersible pumping system and the main components of the ESP including their use and function
- Recognize pump, transformers and controllers, wellhead, tubing cable and cable guards, motor lead cable and intake/gas separator, equalizer/protector, motor and instrumentation

- Carryout ESP installation procedures, reservoir formation, well considerations, installation cautions and limitations
- Illustrate the design of an ESP system to fit current and future well conditions, sizing principles for ESP artificial lift design and diagnosis and ESP design procedure and sensitivity analysis
- Identify mechanical and electrical considerations, the steps to correctly size an electric submersible pump example problem and a similar example to size an ESP
- Determine the impact on well and reservoir of ESP operation and use Nodal™ analysis in ESP applications
- Recognize the effects of gas on the performance of ESP as well as the amount of free gas present at the pump intake and the probability of gas interference
- Establish appropriate measures to prevent gas locking and solve problems sizing equipment for gassy wells
- Use diagnostic from installed instrumentation and diagnostic computer programs
- Identify the effects of viscosity on the performance of submersible pumps and example problem in an application of a field with heavy oil properties to predict pump and motor performance
- Carryout ESP troubleshooting and repair of failed components
- Apply ESP isolation and shutdown, controls for ESP systems including variable speed drives and ESP instrumentation available in the industry
- Carryout SCADA system, telemetry, PLC, ESD, VSD and troubleshooting as well as ESP inspection and failure mode
- Apply data, record keeping and data analysis and identify the effects of artificial lift and ESP on project economics, data analysis and interpretation examples
- Optimize ESP applications to improve project economics and carryout prediction of ESP performance under varying well and reservoir conditions
- Implement analysis and diagnosis of real field examples, present and conclude, remarks from teams and recognize the latest advances on ESP technology

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of electrical submersible pumps for petroleum engineers, production engineers and field staff who are responsible for the selection, operation and maintenance of ESP.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.
- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units (CEUs)** in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Hassan Ali is a **Senior Petroleum & Process Engineer** with over **30 years** of extensive experience in **Offshore & Onshore** fields within the **Oil & Gas** industries. He has great involvement and expert in all facets of **Production Operations** including Oil Plant & Process Operations for **Gas Compressors Stations & Condensate Recovery**, **Gas Dehydration/Regeneration** Units Troubleshooting, **Oil Production & Shipments**, Operations of Sea Water Intake Pumping Station, **Oil Storage Tanks & Loading Facilities**. His area of expertise includes **Electrical Submersible Pump (ESP)**, **Crude Oil Artificial Lift Systems**, **Production Chemistry & Chemical Treatment** in the Oil & Gas Fields, **Processing & Well Testing** activities such as **Gas Lift Wells & ESP Well**, Natural Flow Wells, G/I Wells, G/L Wells, **GOSP & LGP & Land Wells**. He is further well-versed in **HYSYS & PIPESIM** Software Programs for Flow through **Pipeline & Process Equipment** such as Design of **Heat Exchangers** & Troubleshooting, Design of **Fired Heaters** & Operation Problems and **Air Coolers & Pumps** during his day-to-day work. Further, his wide experience also covers **Treatment of Crude Oil**, **Waste Water Treatment Technology**, **Production Shutdown**, **Gas Conditioning & Compressors**, **Plant Shutdown & Partial Shutdown**, **Surface Production Facilities**, **Equipment Related & Petroleum Risk Analysis**.

Mr. Ali is currently the **Field Production General Manager** of **SUCO** that is actively involved in the Production Operations, where he leads all On-shore Facilities, Plant & Off-shore Wells on Three Platforms and reviewed all Equipment Parameters such as Tanks, Vessels, Heat Exchangers, **Pumps Gas Flaring System** as well as **Quality Controller** of Crude Oil Analysis Salt Content & Shipment Crude Specifications to Tankers, Arrange Down Hole Surveys, Productions Logging Tools, Water Shut Off, Perforations, Chemical & Mechanical Tubing Cleaning, Operations of **Off-Shore Gas & Oil Separation** Plant, **Desalter** Plant, **Water Injection** Plant, Four **Gas Compressor** Stations & Four **Glycol** units, **Desalination** units & **R.O** units. Prior to this, he held challenging key positions as a **Production Engineer**, **Onshore Process Shift Engineer**, **Field Offshore Production Engineer**, **Offshore Supervisor**, **Process & Facilities Engineer**, **Production Supervisor**, **Processing Supervisor** and a **Senior Production Operations Engineer**. His experience was not only confined to the industry alone. He has been the **Senior Plant Engineer** in **KJO** and he was also able to contribute his expertise and impart his knowledge as a **Technical Instructor**.

Mr. Ali has a **Bachelor's degree in Petroleum Engineering**. Further, he is an **OSHA Certified**, a **Certified Instructor/Trainer** and holds **Certificates** in **School of Completion & Work Over** and **Well Testing** from the **USA** and has conducted numerous short courses, seminars, conferences and workshops internationally.

Course Date/Venue

Session(s)	Date	Venue
1	April 05-09, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
2	May 31-June 04, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
3	June 28-July 02, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
4	August 31-September 04, 2026	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
5	September 20-24, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
6	November 08-12, 2026	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
7	December 27-31, 2026	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
8	January 03-07, 2027	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
9	February 14-18, 2027	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain

Course Fee

Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 8,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 - 0800	<i>Registration & Coffee</i>
0800 - 0815	<i>Welcome & Introduction</i>
0815 - 0830	<i>PRE-TEST</i>
0830 - 0900	<i>ESP Systems Overview & Operation</i>
0900 - 0930	<i>Principles of ESP Operation, Head Generation, Impeller Types & Characteristics</i>
0930 - 0945	<i>Break</i>
0945 - 1015	<i>Components of ESP System from Surface to Downhole Sensor Describing their Functions, Limitations & Operating Principles</i>
1015 - 1045	<i>Equipment & Accessories that Make Up the Electric Submersible Pumping System</i>
1045 - 1115	<i>The Main Components of the ESP & Their Use and Function</i>
1115 - 1145	<i>Pump, Transformers & Controllers</i>
1145 - 1215	<i>VSD Functions & Benefits</i>
1215 - 1230	<i>Break</i>
1230 - 1300	<i>Wellhead, Tubing Cable & Cable Guards</i>
1300 - 1330	<i>Motor Lead Cable & Intake/Gas Separator</i>
1330 - 1420	<i>Equalizer/Protector, Motor & Instrumentation</i>
1420 - 1430	<i>Recap</i>
1430	<i>Lunch & End of Day One</i>

Day 2

0730 - 0815	<i>ESP Installation Considerations & Cautions of Standards & Non-Standards Applications</i>
0815 - 0845	<i>ESP Installation Procedures</i>
0845 - 0930	<i>Reservoir Formation & Well Considerations</i>
0930 - 0945	<i>Break</i>
0945 - 1030	<i>Installation Cautions & Limitations</i>
1030 - 1100	<i>Design of an ESP System to Fit Current & Future Well Conditions</i>
1100 - 1130	<i>Sizing Principles for ESP Artificial Lift Design & Diagnosis</i>
1130 - 1215	<i>ESP Design Procedure & Sensitivity Analysis</i>
1215 - 1230	<i>Break</i>
1230 - 1300	<i>Mechanical & Electrical Considerations</i>
1300 - 1330	<i>The Steps to Correctly Size an Electric Submersible Pump Example Problem</i>
1330 - 1420	<i>Participants will use a Similar Example to Size an ESP</i>
1420 - 1430	<i>Recap</i>
1430	<i>Lunch & End of Day Two</i>

Day 3

0730 - 0815	<i>Impact on Well and Reservoir of ESP Operation</i>
0815 - 0845	<i>Use of Nodal™ Analysis in ESP Applications</i>
0845 - 0930	<i>The Effects of Gas on the Performance of ESP</i>
0930 - 0945	<i>Break</i>
0945 - 1030	<i>Amount of Free Gas Present at the Pump Intake</i>

1030 – 1100	Probability of Gas Interference
1100 – 1130	Appropriate Measures to Prevent Gas Locking
1130 – 1215	Problems Sizing Equipment for Gassy Wells
1215 – 1230	Break
1230 – 1300	ESP Analysis & Diagnostic
1300 – 1330	Diagnostic from Installed Instrumentation
1330 – 1420	Using Diagnostic Computer Programs
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4

0730 – 0815	Effects of Viscosity on the Performance of Submersible Pumps
0815 – 0845	Example Problem in an Application of a Field with Heavy Oil Properties to Predict Pump & Motor Performance
0845 – 0930	ESP Monitoring & Maintenance
0930 – 0945	Break
0945 – 1030	ESP Troubleshooting
1030 – 1100	Repair of Failed Components
1100 – 1130	ESP Isolation & Shutdown
1130 – 1215	Controls for ESP Systems including Variable Speed Drives
1215 – 1230	Break
1230 – 1300	ESP Instrumentation Available in the Industry
1300 – 1330	SCADA System, Telemetry, PLC, ESD, VSD & Troubleshooting
1330 – 1420	ESP Failure Analysis & DIFA Procedures
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 – 0815	ESP Inspection & Failure Mode
0815 – 0845	Data, Record Keeping & Data Analysis
0845 – 0930	Effects of Artificial Lift & ESP on Project Economics
0930 – 0945	Break
0945 – 1030	Data Analysis & Interpretation Examples
1030 – 1100	Optimization of ESP Applications to Improve Project Economics
1100 – 1130	Class Exercise on the Prediction of ESP Performance Under Varying Well & Reservoir Conditions
1130 – 1215	Analysis & Diagnosis of Real Field Examples from Participants
1215 – 1230	Break
1230 – 1300	Presentations & Concluding Remarks from Teams
1300 – 1345	Latest Advances on ESP Technology
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Jaryl Castillo, Tel: +974 6652 9196, Email: jaryl@haward.org

