

COURSE OVERVIEW DE0171 PTA/RTA Foundation

Course Title

PTA/RTA Foundation

Course Date/Venue

Please refer to page 3

Course Reference

DE0171

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a basic and up-to-date overview of pressure transient analysis/rate transient analysis (PTA/RTA). It covers the basic theory of diffusion PTA/RTA; the basic principles and terminology governing both methods; the Darcy's law and the equation of state leading to the diffusivity equation; the principle of superposition, infinite-acting radial flow, wellbore storage and skin and pseudo-steady state; the PTA methodology from the simple straight line horner to the current model-on-the-fly bourdet derivative; the quality control process before making an analysis; and the basic Saphir features including the interpretation path of load, edit, synchronizing, model, classical methods, derivative and the application to field examples.

Further, the course will also discuss the well models comprising of vertical wells, skin, finite/infinite conductivity fractures, limited entry and horizontal wells; the reservoir models covering homogenous and heterogeneous models behavior including 2Φ , 2κ and composite; the boundary models that include single limit, intersecting, parallel faults and closed system; and the typical errors encountered when diagnosing a boundary effect with an illustration of superposition effects and the influence of production duration on the analysis.

During this interactive course, participants will learn the use of pseudopressures and multiple period analysis for rate dependent skin; the IPR AOF options in Saphir and the connection to the amethyste WPA module; the test objectives and designing a test to achieve them; the methodology from the basic empirical methods including Arps and Fetkovich to the current modern Blasingame, material balance and loglog diagnostic plots; the basic Topaze features including the interpretation path of load, edit, model, $p(q)$, $q(p)$, fast model and application to field examples; the principle of the linear (single phase) numerical model and how to build a model; and the well type, composite zones, faults and thickness.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a basic knowledge on pressure/rate transient analysis
- Discuss the basic theory of diffusion PTA/RTA as well as the basic principles and terminology governing both methods
- Describe Darcy's law and the equation of state leading to the diffusivity equation
- Explain the principle of superposition, infinite-acting radial flow, wellbore storage and skin and pseudo-steady state
- Carryout PTA methodology from the simple straight line horner to the current model-on-the-fly bourdet derivative
- Apply quality control process before making an analysis as well as discuss the basic Saphir features including the interpretation path of load, edit, synchronizing, model, classical methods, the derivative and the application to field examples
- Identify well models comprising of vertical wells, skin, finite/infinite conductivity fractures, limited entry and horizontal wells
- Describe reservoir models covering homogenous and heterogeneous models' behavior including 2Φ , $2k$ and composite
- Recognize boundary models that include single limit, intersecting, parallel faults and closed system
- Determine the typical errors encountered when diagnosing a boundary effect with an illustration of superposition effects and the influence of production duration on the analysis
- Use pseudo pressures and multiple period analysis for rate dependent skin
- Explain the IPR AOF options in Saphir and the connection to the amethyst WPA module
- Discuss test objectives and design a test to achieve them
- Apply methodology from the basic empirical methods including Arps and Fetkovich to the current modern Blasingame, material balance and loglog diagnostic plots
- Recognize the basic Topaze features including the interpretation path of load, edit, model, $p(q)$, $q(p)$, fast model and application to field examples
- Discuss the principle of the linear (single phase) numerical model and how to build a model
- Define the well type and identify composite zones, faults and thickness

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive “Haward Smart Training Kit” (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides a basic and up-to-date overview of pressure/rate transient analysis for production engineers, reservoir engineers, production, operations, petroleum and reservoir engineers, geologists, analysts field personnel, senior and field supervisors with an engineering background and analysts involved with the design, supervision and interpretation of well tests who need to obtain a better understanding of the advanced practices used in pressure transient tests and its advanced interpretation models.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Date/Venue

Session(s)	Date	Venue
1	April 26-30, 2026	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
2	May 31-June 04, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
3	July 12-16, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
4	August 02-06, 2026	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
5	September 06-10, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
6	October 26-30, 2026	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
7	December 13-17, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
8	January 10-14, 2027	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
9	March 14-18, 2027	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council for Independent Further and Higher Education** as an **International Centre**.

Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Giovanni Da Prat, PhD, MSc, BSc, is a **Senior Petroleum & Reservoir Engineer** with over **30 years** of industrial experience within the **Oil & Gas, Petrochemical and Refinery** industry. His expertise widely covers in the areas of Advanced **Well Testing**, **Well Testing** for Injector Wells, Pressure & Rate Transient Analysis (PTA/RTA) Methods, **Well Test Analysis & Saphir Application**, **Formation Evaluation Results & Reservoir** Engineering, Multi-Rate Test Evaluation, Production & Back Pressure Tests, **Production** Engineering, Interpretation of **Pressure Tests**, **Pressure Data Quality** Control, **Pressure Transient Data** Acquisition & Analysis, **Decline Curve** Analysis, **Layered Reservoir** Evaluation, **Pressure Test** History Simulation, Deconvolution Method, Pseudo Pressure & Pseudo Time, Unconventional **Reservoirs**, **Reservoir** Engineering & Management, **Well Test** Engineering, **Analytical Interpretation** Model, Nonlinear Numerical Interpretation Model, **Oil & Gas Wells**, **Well Test** Design & Interpretation, Exploratory Wells Evaluation Methodology, Advanced **Well Test** Analysis, DST Testing (Offshore), **Field Testing** Program Design, Testing **Naturally Fractured Reservoirs** Detection & Evaluation, **Integrated Reservoir** Management, **Integrated Carbonate Reservoir** Characterization, Unconventional **Shale Oil & Gas Resources**, **Nodal** Analysis, **Seismology**, **Fracture** Characterization & Modelling, **Natural Gas**, Completion, **Geophysics**, **Integrated Petrophysics**, **Directional Drilling**, Formation Evaluation, Falloff Testing, Production Systems, **Laboratory Seismic Methods** for **Remote Monitoring of Thermal EOR**, **Artificial Lift** and **Logging**.

During his career life, Dr. Da Prat has gained his practical and field experience through his various significant positions and dedication as the **Unit Production Head**, **District Reservoir Engineer**, **Regional Reservoir Engineer**, **Reservoir Engineer** and **Well Testing Consultant & SPE Global Instructor** for numerous international companies like **Schlumberger**, **Halliburton**, **GeoQuest**, **Intevep**, **PDVSA** and **DA PRAT Well Testing**.

Dr. Da Prat has a **PhD** degree in **Petroleum Engineering**, a **Master** degree in **Geophysics** and a **Bachelor** degree in **Physics** from the **Stanford University, USA** and **Universidad Central de Venezuela**, respectively. Further, he is a **Certified Instructor/Trainer**, an **SPE Distinguished Lecturer** and has been the author and co-author of over a hundred technical articles, about 25 are SPE technical articles which are available in OnePetro, and all of them have been presented at ATCE, LACPEC and other related SPE conferences. He has further delivered numerous trainings, courses, seminars and workshops internationally.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

London	US\$ 8,800 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 8,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 8,000 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 8,000 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	<i>Registration & Coffee</i>
0800 – 0815	<i>Welcome & Introduction</i>
0815 – 0830	PRE-TEST
0830 – 0930	Introduction to PTA & RTA <i>When do we Perform PTA or RTA?</i>
0930 – 0945	<i>Break</i>
0945 – 1130	Basic Theory of Diffusion PTA/RTA <i>The Basic Principles & Terminology Governing both Methods • Introduction to Darcy's Law & the Equation of State Leading to the Diffusivity Equation</i>
1130 – 1230	Basic Theory of Diffusion PTA/RTA (cont'd) <i>The Principle of Superposition, Infinite-Acting Radial Flow, Wellbore Storage & Skin & Pseudo-Steady State</i>
1230 – 1245	<i>Break</i>
1245 - 1420	PTA Methodology <i>Methodology from the Simple Straight-Line Horner to the Current Model-on-the-fly Bourdet Derivative</i>
1420 – 1430	Recap
1430	<i>Lunch & End of Day One</i>

Day 2

0730 – 0930	QA/QC <i>The Quality Control Process before Making an Analysis</i>
0930 – 0945	<i>Break</i>
0945 – 1130	Saphir Practical <i>The Basic Saphir Features including the Interpretation Path of Load • Edit • Synchronizing • Model</i>

1130 - 1230	Saphir Practical Classical Methods • The Derivative • The Application to Field Examples
1230 - 1245	Break
1245 - 1420	Well Models Vertical Wells • Skin • Finite/Infinite Conductivity Fractures • Limited Entry • Horizontal Wells
1420 - 1430	Recap
1430	<i>Lunch & End of Day Two</i>

Day 3

0730 - 0930	Reservoir Models Homogenous & Heterogeneous Models Behavior Including 2Φ , 2κ & Composite
0930 - 0945	Break
0945 - 1130	Boundary Models Single Limit, Intersecting, Parallel Faults & Closed System
1130 - 1230	Boundary Models (cont'd) Typical Errors Encountered when Diagnosing a Boundary Effect with an Illustration of Superposition Effects • The Influence of Production Duration on the Analysis
1230 - 1245	Break
1245 - 1420	Basic Gas Tests The Use of Pseudopressures & Multiple Period Analysis for Rate Dependant Skin Includes an Isochronal Test Example
1420 - 1430	Recap
1430	<i>Lunch & End of Day Three</i>

Day 4

0730 - 0930	IPR AOF The IPR AOF Options in Saphir & the Connection to the Amethyste WPA Module
0930 - 0945	Break
0945 - 1130	Test Design Test Objectives & How to Design a Test to Achieve Them
1130 - 1230	RTA Methodology Methodology from the Basic Empirical Methods including Arps & Fetkovich to the Current Modern Blasingame
1230 - 1245	Break
1245 - 1420	RTA Methodology (cont'd) Material Balance & Loglog Diagnostic Plots
1420 - 1430	Recap
1430	<i>Lunch & End of Day Four</i>

Day 5

0730 - 0930	Topaze Practical The Basic Topaze Features including the Interpretation Path of Load • Edit • Model • $p(q)$
0930 - 0945	Break
0945 - 1130	Topaze Practical (cont'd) $q(p)$ • Fast Model • Application to Field Examples

1130 – 1230	Basic Numerical PTA/RTA <i>The Principle of the Linear (Single Phase) Numerical Model • How to Build a Model • Defining the Well Type • Composite Zones • Faults & Thickness</i>
1230 – 1245	<i>Break</i>
1245 - 1345	An Introduction to Advanced Features
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	<i>Presentation of Course Certificates</i>
1430	<i>Lunch & End of Course</i>

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises: -

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org