

COURSE OVERVIEW DE0284 Well Test Design and Analysis

Course Title

Well Test Design and Analysis

Course Date/Venue

Please refer to page 4

Course Reference

DE0284

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

Well testing is a dynamic process. At its simplest, a test discovers if a formation can flow and permits sampling of the produced fluid. Analysis can yield further information like the extent of formation damage near the borehole, reservoir permeability and heterogeneity, and initial productivity index. For this, engineers induce pressure transients by changing the rate that formation fluids enter the borehole and recording the resulting downhole pressure versus time.

Transient tests can also reveal the reservoir's areal extent and vertical layering. Primary concerns in testing exploration wells are obtaining representative samples and estimating reservoir producibility. Fluid samples are needed to determine various physical parameters required for well test analysis, such as compressibility and viscosity, and for pressure-volume-temperature (PVT) analysis that unlocks how the hydrocarbon phases coexist at different pressures and temperatures.

The analysis and interpretation of well tests have evolved remarkably since the technique became established. Today, a unified methodology has developed to obtain the maximum information from any transient. Analysis, however, reaches deeper than just the near-wellbore region.

Today, it contributes so much to characterizing the reservoir that engineers increasingly refer to well testing as reservoir testing. Analysis can indicate the likely producing mechanism of the formation-for example, how much production comes from fractures, how much from intergranular porosity- and it can determine the producing zone's permeability-thickness product, kh . It can see to the limits of the reservoir indicating the probable shape {but not orientation} of the reservoir boundaries and can show whether the primary recovery mechanism is from water or gas-cap support. This information becomes crucial in the appraisal and production stages of field development when engineers combine testing interpretation results with seismic and geologic data to refine their understanding of the reservoir.

Designing well tests involves many of the same steps the interpreter uses. This is because once a test has been proposed, both the pressure data and the data's interpretation can be simulated to show that the test as designed meets its goals – design simulation requires estimates of formation and fluid parameters from nearby wells or the well in question. By predicting the likely shape of the log-log Δp and derivative curves, the engineer can demonstrate the feasibility of detecting and characterizing the anticipated reservoir features. For example, design simulation ensures that wellbore storage does not smother the feature being sought and guarantees a test that is long enough to view suspected reservoir boundaries. Another important feature of simulation is determining the accuracy and precision required of the pressure gauges. The design phase not only maps out the mechanics of a test, but also ensures that once underway objectives are met.

This course is designed to provide participants with a detailed and up-to-date overview of well test design and analysis. It covers the basic concepts, gas wells and multi-phase flow of well test analysis; the fluid properties and modifications for gas wells and multiphase flow; the horizontal and vertical permeability, skin and effective flowing length; the acidized horizontal wells; the effect of layering, formation thickness, constant pressure boundary (gas cap) and integration of production logging; the condensate-gas relative permeability and the importance of compositional analysis; the liquid drop-out effect, non-darcy flow in gas condensate wells and radial composite behavior; the drawdown and buildup test in oil and gas wells; the extended drawdown testing, compartmentalized reservoir behavior, extended buildups and recharging; the reserve estimation and flow regimes identification using the log-log diagnostic plot; and the characteristic pressure behavior for common bounded reservoir geometries.

During this interactive course, participants will learn the well test data affected by various wellbore and near-wellbore phenomena; the design of well test to meet desired objectives; estimating average drainage area pressure; analyzing well tests in hydraulically fractured wells, horizontal wells and naturally fractured reservoirs; the post hydraulic fracture analysis, finite conductivity fractures and bilinear and pseudo radial flow regimes; the type of curves for well test interpretation; the fracture skin and non-darcy flow in gas wells; the importance of pre-fracture testing and difficulties in analyzing WT incompleteness; and the slug test analysis, non-ideal wellbore storage, injection wells and relevant real cases for analysis and interpretation.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on well test design and analysis
- Analyze drawdown and buildup tests in oil and gas wells
- Identify flow regimes using the log-log diagnostic plot
- Describe characteristic pressure behavior for common bounded reservoir geometries
- Identify well test data affected by various wellbore and near-wellbore phenomena
- Design a well test to meet desired objectives and estimate average drainage area pressure
- Analyze well tests in hydraulically fractured wells, horizontal wells and naturally fractured reservoirs
- Review the basic concepts, gas wells and multi-phase flow of well test analysis
- Identify fluid properties and the modifications for gas wells and multiphase flow
- Interpret horizontal and vertical permeability, skin and effective flowing length as well as acidized horizontal wells
- Recognize the effect of layering, formation thickness, constant pressure boundary (gas cap) and integration of production logging
- Explain condensate-gas relative permeability and the importance of compositional analysis
- Describe liquid drop-out effect, non-darcy flow in gas condensate wells and radial composite behavior
- Carryout extended drawdown testing, compartmentalized reservoir behavior, extended building and recharging and reserve estimation
- Illustrate post hydraulic fracture analysis, finite conductivity fractures and bilinear and pseudo radial flow regimes
- Identify the various type of curves for well test interpretation as well as fracture skin and non-darcy flow in gas wells
- Discuss the importance of pre-fracture testing as well as difficulties in analyzing WT incomple
- Carryout slug test analysis, non-ideal wellbore storage, injection wells and the relevant real cases for analysis and interpretation

Exclusive Smart Training Kit - H-STK®

*Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.*

Who Should Attend

This course provides a basic overview of all significant aspects and considerations of well test design and analysis for reservoir engineers, petroleum engineers and reservoir technical assistants.

Course Date/Venue

Session(s)	Date	Venue
1	April 26-30, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
2	July 12-16, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
3	September 06-10, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
4	October 18-22, 2026	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
5	November 02-06, 2026	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
6	December 13-17, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
7	December 14-18, 2026	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
8	January 03-07, 2027	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
9	February 14-18, 2027	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
10	March 21-25, 2027	Meeting Plus 9, City Centre Rotana, Doha, Qatar

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

Dubai	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 8,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council for Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units (CEUs)** in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Ron Guney, MSc, BSc, is a **Senior Geophysicist** with over **30 years** of **Offshore & Onshore** experience within the **Oil, Gas, Refinery** and **Petrochemical** industries. His expertise widely covers **Geophysics, Geophysical Technology, Borehole Geophysics, Seismology, Wave Propagation & Velocities, Seismic Acquisition Techniques, Seismic Data Processing, Vertical Seismic Profiling (VSP), Seismic Data Interpretation, Geomodelling, Prospect Generation-Delineation & Reservoir Modelling, Static Modelling, Prospect Generation through Seismic Structural & Stratigraphic Interpretation, Prospect-Play Risk Assessment & Ranking, Resource & Reserve Estimations, Post Stack Seismic Attribute Analysis, Post Stack Seismic Inversion, Traveltime Inversion, Crossborehole Seismic Tomography, Seismic Sequence Stratigraphy, Program Coding (VSP & Cross-borehole Travel Time Inversion ART and SIRT), Post Drill Well Assessment, Field Development, Seismostratigraphy, Seismotectonics & Geodynamics & Modelling, Cartographic Information Systems (CIS), Geographic Information Systems (GIS), Geodesy & Topography, Geodesy, Map Projections & Coordinate Systems, Geological Maps (GM), Topographic & Geologic Maps, Cartography Assisted by Computer (CAC), Global Positional System (GPS), Petroleum Geology, Advanced Petrophysics, Petroleum Exploration, Petroleum Economics, Drilling, Core-to-Log Data Integration (SCAL), Basin Modelling & Total Petroleum System (TPS), Well Logging, Formation Evaluation, Well Testing & Data Interpretation, Pore Pressure Prediction and Oil & Gas Reserves Estimations. He is also an expert in 2D & 3D Seismic Interpretation Oil Risk Analysis, Landmark, Zmap+ Mapping Package, Petrel Schlumberger, Promax Processing System and 3D Seismic Data Acquisition. Currently, he is the Senior Geophysicist Consultant of Eastern Offshore Black Sea E&P Projects.**

During his long career, Mr. Guney has gained his practical and field experience through his various significant positions and dedication as the **Senior Geophysicist Consultant, Senior Geophysicist, Senior Project Geophysicist, Teaching Assistant, Lecturer, Instructor/Trainer** from numerous international companies such as the Eastprime Service Co., Emirates National Oil Company (ENOC) - Dragon Oil, OMV Petrol and Turkish Petroleum Corp, just to name a few.

Mr. Guney has a **Master's** degree in **Geology** from the **University of New Orleans, USA** and a **Bachelor's** degree in **Geophysics** from the Istanbul Technical University. Further, he is a **Certified Instructor/Trainer, a Certified Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** and has **published books** and **scientific papers** such as **Iterative Wavefront Reconstruction Technique (IWR), Mathematical Geophysics, Model Optimisation in Exploration Geophysics, Importance of Seismic Interpretation Systems** and delivered various trainings, seminars, workshops, courses and conferences worldwide.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours: -

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	<i>Registration & Coffee</i>
0800 – 0815	<i>Welcome & Introduction</i>
0815 – 0830	<i>PRE-TEST</i>
0830 - 0930	<i>Welltest Analysis -Review of Basic Concepts</i>
0930 - 0945	<i>Break</i>
0945 – 1030	<i>Welltest Analysis -Gas Wells & Multi-Phase Flow</i>
1030 – 1100	<i>Fluid Properties: Modifications for Gas Wells & Multiphase Flow</i>
1100 – 1130	<i>Interpretation for Horizontal & Vertical Permeability, Skin & Effective Flowing Length</i>
1130 - 1230	<i>Acidized Horizontal Wells</i>
1230 - 1245	<i>Break</i>
1245 – 1345	<i>Effect of Layering, Formation Thickness</i>
1345 - 1420	<i>Constant Pressure Boundary (Gas Cap)</i>
1420 - 1430	<i>Recap</i>
1430	<i>Lunch & End of Day One</i>

Day 2

0730 - 0830	<i>Integration of Production Logging</i>
0830 - 0930	<i>Condensate-Gas Relative Permeability</i>
0930 - 0945	<i>Break</i>
0945 – 1030	<i>Importance of Compositional Analysis</i>
1030 – 1145	<i>Liquid Drop-out Effect</i>
1145 - 1230	<i>Non-Darcy Flow in Gas Condensate Wells</i>
1230 - 1245	<i>Break</i>
1245 – 1330	<i>Radial Composite Behavior</i>
1330 - 1420	<i>Analyze Drawdown & Buildup Tests in Oil & Gas Wells?</i>
1420 - 1430	<i>Recap</i>
1430	<i>Lunch & End of Day Two</i>

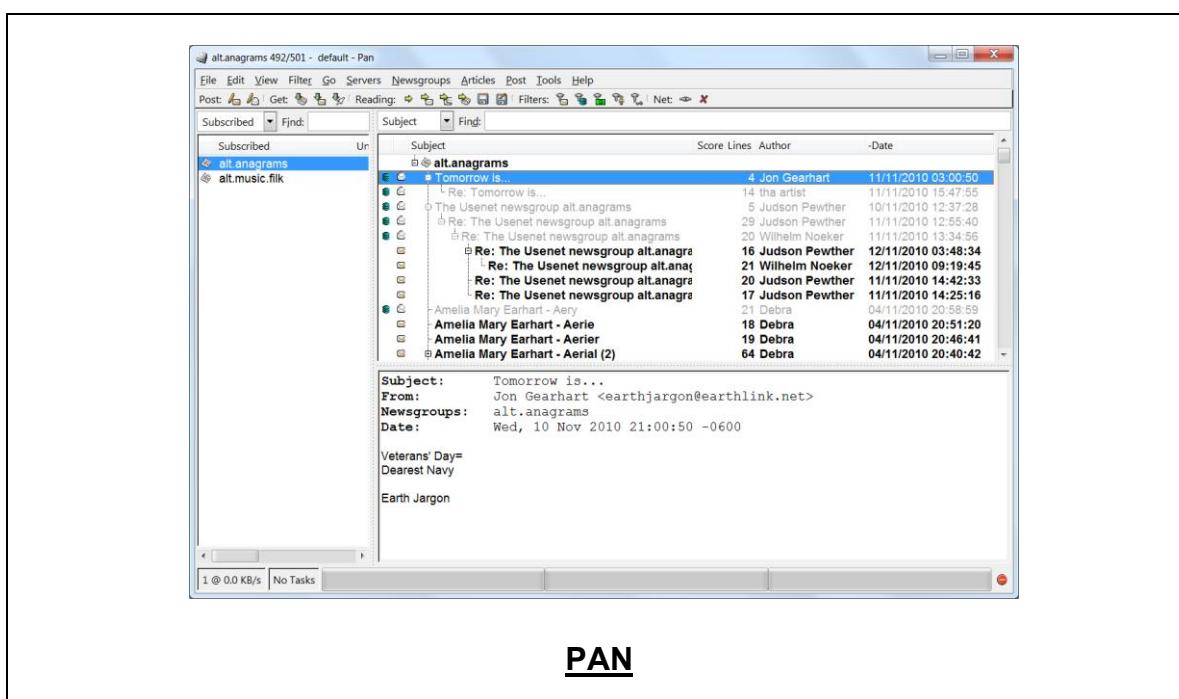
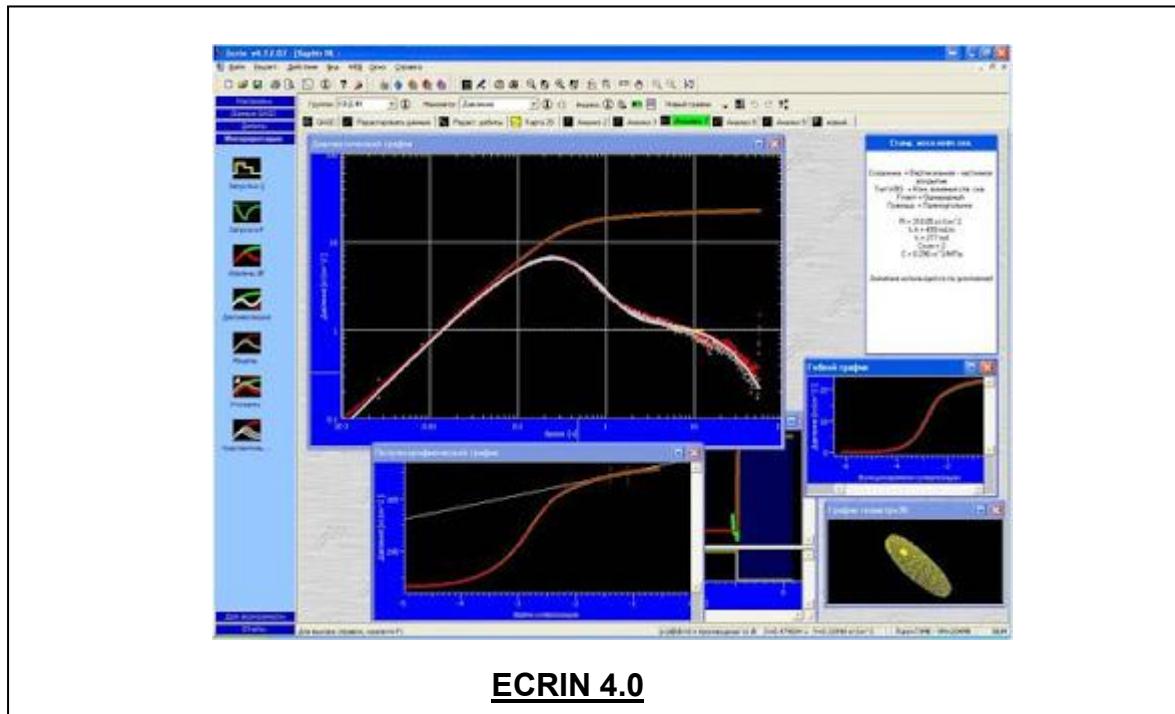
Day 3

0730 - 0830	<i>Extended Drawdown Testing</i>
0830 - 0930	<i>Compartmentalized Reservoir Behavior</i>
0930 - 0945	<i>Break</i>
0945 - 1030	<i>Extended Buildups & Recharging</i>
1030 - 1145	<i>Reserve Estimation</i>
1145 - 1230	<i>Flow Regimes Identifying Using the Log-Log Diagnostic Plot?</i>
1230 - 1245	<i>Break</i>
1245 - 1330	<i>Characteristic Pressure Behavior for Common Bounded Reservoir Geometries?</i>
1330 - 1420	<i>Well Test Data Affected by Various Wellbore & Near-Wellbore Phenomena?</i>
1420 - 1430	<i>Recap</i>
1430	<i>Lunch & End of Day Three</i>

Day 4

0730 - 0830	<i>Design a Well Test to Meet Desired Objectives</i>
0830 - 0930	<i>Estimate Average Drainage Area Pressure?</i>
0930 - 0945	<i>Break</i>
0945 - 1030	<i>Analyze Well Tests in Hydraulically Fractured Wells, Horizontal Wells & Naturally Fractured Reservoirs</i>
1030 - 1100	<i>Post Hydraulic Fracture Analysis</i>
1100 - 1120	<i>Interference Test Procedure & Analysis</i>
1120 - 1230	<i>Finite Conductivity Fractures</i>
1230 - 1245	<i>Break</i>
1245 - 1330	<i>Bilinear & Pseudo Radial Flow Regimes</i>
1330 - 1420	<i>Type Curves for Well Test Interpretation</i>
1420 - 1430	<i>Recap</i>
1430	<i>Lunch & End of Day Four</i>

Day 5



0730 - 0830	<i>Fracture Skin & Non-Darcy Flow in Gas Wells</i>
0830 - 0930	<i>Importance of Pre-Fracture Testing</i>
0930 - 0945	<i>Break</i>
0945 - 1030	<i>Difficulties in Analyzing WT Incomplex</i>
1030 - 1120	<i>Slug Test Analysis</i>
1120 - 1200	<i>Non-ideal Wellbore Storage</i>
1200 - 1230	<i>Injection Wells</i>
1230 - 1245	<i>Break</i>
1245 - 1345	<i>Relevant Real Cases for Analysis & Interpretation</i>
1345 - 1400	<i>Course Conclusion</i>
1400 - 1415	<i>POST-TEST</i>
1415 - 1430	<i>Presentation of Course Certificates</i>
1430	<i>Lunch & End of Course</i>

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "ECRIN/PAN" software.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

