

COURSE OVERVIEW DE0348 Artificial Lift Systems

Course Title

Artificial Lift Systems

Course Date/Venue

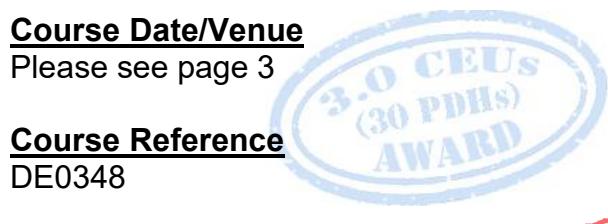
Please see page 3

Course Reference

DE0348

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs


Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

Most of the world's oil wells are placed on some kind of artificial lift, the most significant of which are sucker-rod pumping, gas lifting, and electrical submersible pumping. Production engineers are required to design and operate these installations at their peak efficiencies so as to reach a maximum of profit. To achieve this goal, a perfect understanding of the design of the different lift methods, as well as working skills in the ways ensuring optimum production condition is necessary.

This course first provides an overview of well-performance evaluation leading to determination of well conditions necessitating application of artificial lift. The various types of artificial lift systems along with their selection criteria are then presented. The theoretical and practical aspects of the most important artificial lift methods will be covered, so that at the end of the course the participants will have a sound knowledge of the theory underlying each method as well as a broad view of the relative advantages, disadvantages, niche of applications and limitations of each artificial lift system.

The course integrates lectures with hands-on exercises. Participants of this course will work with software that allows them to design and analyze artificial lift designs, which will improve performance and results in higher production rates and/or reduced operating costs. Participants will also learn how to design and troubleshoot rod pumping, continuous gas lift and ESP systems.

The course also covers other methods such as PCP, plunger lift, jet pump, hydraulic pump and intermittent gas lift. Participants are expected to gain experience in solving problems by hand and also by using advanced computer programs. Troubleshooting is an important part of artificial lift operations which will be illustrated in the course covering several typical surveillance problems to be solved.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on artificial lift systems
- Discuss artificial lift technology and the criteria and principles for selection of artificial lift system
- Analyse inflow and outflow relationships of reservoir performance
- Compare various artificial lift systems and determine which one is most economically feasible
- Determine natural flow, inflow performance, tubing flow performance and well performance
- Carryout artificial lift screening and explain the rod-pumping, gas lift and ESP systems
- Identify the basic PVT properties and perform inflow performance (IPR) calculations related to artificial
- Apply multiphase tubing and pipe flow principles and select the appropriate artificial lift system
- Specify components and auxiliary equipment needed for each system
- Illustrate rod-pump design covering pumping unit, rods, pump, prime movers, gas anchor and pump-off controls
- Apply gas lift technology and identify its limitations
- Describe gas lift design that includes mandrels, valves, injection gas requirements, temperature, chokes, spacing, equilibrium curve and continuous flow design
- Illustrate ESP design comprising of pump performance curves, pump intake curves, typical problems, installation and troubleshooting
- Design system features that allow for gassy production, production with solid, viscous production and for other harsh environments
- Employ best practices for installation and maintenance to extend the life of equipment and installed lift systems
- Apply basic design and discuss economic analysis concepts

Exclusive Smart Training Kit - H-STK®

*Participants of this course will receive the exclusive “Haward Smart Training Kit” (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.*

Who Should Attend

This course provides an overview of all significant aspects and considerations of artificial lift systems for petroleum engineers, production engineers, reservoir engineers and field supervisors who are involved in the selection and design of artificial lift.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Date/Venue

Session(s)	Date	Venue
1	May 04-08, 2026	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
2	July 20-24, 2026	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
3	August 16-20, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
4	September 20-24, 2026	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
5	October 04-08, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
6	December 13-17, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
7	January 17-21, 2027	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
8	January 18-22, 2027	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
9	February 14-18, 2027	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
10	March 14-18, 2027	Meeting Plus 9, City Centre Rotana, Doha, Qatar

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

-

[British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council for Independent Further and Higher Education** as an **International Centre**.

Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

-

[The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units (CEUs)** in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Chris Kapetan, PhD, MSc, BSc, is a **Senior Drilling & Process Engineer** with over **30 years** of international experience within the **onshore and offshore oil and gas industry**. His wide experience covers **Asset Operational Integrity** for Operations, **Process Plant** Operations, Control & Troubleshooting, **Plant Shutdown** System & Flare Systems, **Heat Exchangers & Fired Heaters** Operation & Troubleshooting, **Gas Conditioning**, Treatment & Processing Technology, **Production Operations** in the Oil & Gas Fields & Surface Facilities, **LNG Process**, **Applied Process** Engineering Elements, **Production Control** Systems, Well Commissioning & Crude Oil Specifications, **Hydrogenation & Gasification** Technology, **Physical & Chemical** Solvents, Sulfide Stress Cracking (**SSC**), Hydrogen Induced Cracking (**HIC**), **Corrosion**, Steels & Alloys, **Fertilizer Manufacturing** Process Technology, **Fertilizer Storage** Management (Ammonia & Urea), **Process Calculation Methods**, **Directional Planning**, **Completion Design**, **Directional Surveying**, **Drilling Fluids**, **Matrix Acidizing**, **Hydraulic Fracturing**, **Well Completion** Design & Operation, **Cased Hole Formation Evaluation**, **Cased Hole Logs**, **Production Management**, **Drilling Operations**, **Directional Drilling**, **Gas Lift Operations**, **Petroleum Business**, **Petroleum Economics**, **Gas Lift Valve** Changing & Installation, **Horizontal & Multilateral Wells**, **Well Stimulation & Control** and **Workover Planning**, **Completions & Workover**, **Rig Sizing**, **Hole Cleaning & Logging**, **Well Completion**, **Servicing & Work-Over** Operations, Practical **Reservoir** Engineering, **X-mas Tree & Wellhead** Operations, Maintenance & Testing, **Advanced Petrophysics/Interpretation** of Well Composite, **Construction Integrity & Completion**, **Coiled Tubing** Technology, **Corrosion Control**, **Wireline & Coil Tubing**, **Pipeline Pigging**, **Corrosion Monitoring**, **Cathodic Protection**, Root Cause Analysis (**RCA**), Root Cause Failure Analysis (**RCFA**), **Production Safety** and **Delusion of Asphalt**. Currently, he is the **Operations Manager** at **GEOTECH** and an independent **Drilling Operations Consultant** of various engineering services providers to the international clients as he offers his expertise in many areas of the **drilling discipline** and is well **recognized & respected** for his process and procedural expertise as well as ongoing participation, interest and experience in continuing to promote technology to producers around the world. Currently, he is the **Operations Consultant & the Technical Advisor** at **GEOTECH** and an independent **Drilling Operations Consultant** of various engineering services providers to the international clients as he offers his expertise in many areas of the **drilling & petroleum** discipline and is well **recognized & respected** for his process and procedural expertise as well as ongoing participation, interest and experience continuing to promote technology to producers around the world.

Throughout his long career life, Dr. Chris has worked for many international companies and has spent several years **managing** technically **complex wellbore interventions** in both **drilling & servicing**. He is a **well-regarded** for his **process and procedural expertise**. Further, he was the **Operations Manager** at **ETP Crude Oil Pipeline Services** where he was fully responsible for optimum operations of crude oil pipeline, **workover** and **directional drilling**, **drilling rigs** and equipment, drilling of various geothermal deep wells and **exploration wells**. Dr. Chris was the **Drilling & Workover Manager & Superintendent** for **Kavala Oil** wherein he was responsible for supervision of **drilling** operations and **offshore exploration**, quality control of performance of **rigs**, **coiled tubing**, **crude oil** transportation via pipeline and abandonment of **well** as per the API requirements. He had occupied various key positions as the **Drilling Operations Consultant**, **Site Manager**, **Branch Manager**, **Senior Drilling & Workover Manager & Engineer**, **Drilling & Workover Engineer**, **Process Engineer**, **Operations Consultant** and **Technical Advisor** in several petroleum companies responsible mainly on an **offshore** sour oil field (under water flood and gas lift) and a gas field. Further, Dr. Chris has been a **Professor** of the **Oil Technology College**.

Dr. Chris has **PhD** in **Reservoir Engineering** and a **Master's** degree in **Drilling & Production Engineering** from the **Petrol-Gaze Din Ploiesti University**. Further, he is a **Certified Surfaced BOP Stack Supervisor** of **IWCF**, a **Certified Instructor/Trainer**, a **Certified Trainer/Assessor/Internal Verifier** by the **Institute of Leadership & Management (ILM)** and has conducted numerous short courses, seminars and workshops and has published several technical books on **Production Logging**, **Safety Drilling Rigs** and **Oil Reservoir**.

Course Fee

Istanbul	US\$ 8,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	<i>Registration & Coffee</i>
0800 – 0815	<i>Welcome & Introduction</i>
0815 – 0830	PRE-TEST
0830 - 0930	<i>Overview of Artificial Lift Technology</i>
0930 – 0945	<i>Break</i>
0945 – 1100	<i>Criteria for Selection of Artificial Lift System</i>
1100 – 1230	<i>Reservoir Performance: Inflow & Outflow Relationships</i>
1230 – 1245	<i>Break</i>
1245 – 1420	<i>Natural Flow</i>
1420 – 1430	Recap
1430	<i>Lunch & End of Day One</i>

Day 2

0730 – 0930	<i>Inflow Performance</i>
0930 – 0945	<i>Break</i>
0945 – 1100	<i>Tubing Flow Performance</i>
1100 – 1230	<i>Well Performance</i>
1230 – 1245	<i>Break</i>
1245 – 1420	<i>Artificial Lift Screening</i>
1420 – 1430	Recap
1430	<i>Lunch & End of Day Two</i>

Day 3

0730 – 0930	Introduction to Rod-Pumping, Gas Lift, & ESP Systems
0930 – 0945	<i>Break</i>
0945 – 1100	Rod-Pump Design: Pumping Unit, Rods, Pump, Prime Movers, Gas Anchor, Pump-off Controls
1100 – 1230	Rod-Pump Design: Pumping Unit, Rods, Pump, Prime Movers, Gas Anchor, Pump-off Controls (cont'd)
1230 – 1245	<i>Break</i>
1245 – 1420	Application of Gas Lift Technology & its Limitations
1420 – 1430	Recap
1430	<i>Lunch & End of Day Three</i>

Day 4

0730 – 0930	Gas Lift Design: Mandrels, Valves, Injection Gas Requirements, Temperature, Chokes, Spacing, Equilibrium Curve, Continuous Flow Design
0930 – 0945	<i>Break</i>
0945 – 1100	Gas Lift Design: Mandrels, Valves, Injection Gas Requirements, Temperature, Chokes, Spacing, Equilibrium Curve, Continuous Flow Design (cont'd)
1100 – 1230	Gas Lift Design: Mandrels, Valves, Injection Gas Requirements, Temperature, Chokes, Spacing, Equilibrium Curve, Continuous Flow Design (cont'd)
1230 – 1245	<i>Break</i>
1245 – 1420	ESP Design: Pump Performance Curves, Pump Intake Curves, Typical Problems, Installation, Troubleshooting
1420 – 1430	Recap
1430	<i>Lunch & End of Day Four</i>

Day 5

0730 – 0930	ESP Design: Pump Performance Curves, Pump Intake Curves, Typical Problems, Installation, Troubleshooting (cont'd)
0930 – 0945	<i>Break</i>
0945 – 1100	ESP Design: Pump Performance Curves, Pump Intake Curves, Typical Problems, Installation, Troubleshooting (cont'd)
1100 – 1230	Best Practices for Installation & Maintenance
1230 – 1245	<i>Break</i>
1245 – 1345	Economic Analysis
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	<i>Lunch & End of Course</i>

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org