

COURSE OVERVIEW DE0377 Advanced Well Testing and Interpretation

Course Title

Advanced Well Testing and Interpretation

Course Date/Venue

Please refer to page 3

Course Reference

DE0377

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Advanced Well Testing and Interpretation. It covers the importance of well testing in reservoir management; the different fluid types and flow patterns in reservoirs; the pressure transient analysis and how wellbore conditions affect test data; the safety considerations in well testing; the detailed pressure transient analysis and interpretation; the pressure derivative analysis, type curve analysis and rate transient analysis; the effective well test design and planning, interference testing, pulse testing and multi-rate testing; and the wellbore storage, skin effect and gas well testing.

During this interactive course, participants will learn the naturally fractured reservoirs, horizontal well testing and reservoir boundaries and heterogeneities; analyzing pressure transient behavior in different reservoir types; integrating well test data with reservoir simulation; using well test data for reservoir management decisions and real-time well test data interpretation; the pressure transient analysis in unconventional reservoirs; the impact of oil recovery (EOR) on well test interpretation; and the best practices for data handling and reporting.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an advanced knowledge on well testing and interpretation
- Discuss the importance of well testing in reservoir management and identify the different fluid types and flow patterns in reservoirs
- Carryout pressure transient analysis and identify how wellbore conditions affect test data
- Employ safety considerations in well testing as well as detailed pressure transient analysis and interpretation
- Carryout pressure derivative analysis, type curve analysis and rate transient analysis
- Apply effective well test design and planning, interference testing, pulse testing and multi-rate testing
- Identify and analyze wellbore storage and skin effect and apply gas well testing
- Test and interpret naturally fractured reservoirs, horizontal well testing and reservoir boundaries and heterogeneities
- Analyze pressure transient behavior in different reservoir types and integrate well test data with reservoir simulation
- Use well test data for reservoir management decisions and apply real-time well test data interpretation
- Carryout pressure transient analysis in unconventional reservoirs and discuss the impact of oil recovery (EOR) on well test interpretation
- Implement best practices for data handling and reporting

Exclusive Smart Training Kit - H-STK®

*Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.*

Who Should Attend

This course provides an overview of all significant aspects and consideration of advanced well testing and interpretation for production engineers, completion engineers, well services engineers, well integrity management engineers, drilling/completion/intervention engineers and other technical staff.

Course Date/Venue

Session(s)	Date	Venue
1	May 10-14, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
2	August 16-20, 2026	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
3	September 20-24, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
4	October 26-30, 2026	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
5	November 01-05, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
6	November 23-27, 2026	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
7	December 27-31, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
8	January 03-07, 2027	Meeting Plus 9, City Centre Rotana, Doha, Qatar
9	February 07-11, 2027	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
10	March 14-18, 2027	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

Dubai	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 8,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council for Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units (CEUs)** in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. John Petrus, PhD, MSc, BSc, is a **Senior Reservoir Engineer & Geologist** with over **30 years** of **onshore & offshore** experience within the **Oil & Gas, Refinery** and **Petroleum** industries. His wide experience covers in the areas of **Production Technology & Engineering, Well Completions, Well Logs, Well Stimulation & Production Logging, Well Completion Design & Operation, Well Surveillance, Well Testing, Well Stimulation & Control** and **Workover Planning, Completions & Workover**, Hole Cleaning & Logging, Servicing and **Work-Over Operations, Wellhead Operations, Maintenance & Testing, Petrophysics/Interpretation of Well Composite, Reservoir & Tubing Performance, Practical Reservoir Engineering, Clastic Exploration & Reservoir Sedimentology, Carbonate Reservoir Characterization & Modeling, Seismic Interpretation, Mapping & Reservoir Modelling, Reservoir Geology, Integrating Geoscience into Carbonate Reservoir Management, Faulted & Fractured Reservoirs, Fractured Hydrocarbon Reservoirs, Analyses, Characterisation & Modelling of Fractured Reservoirs & Prospects, Fracture Reservoir Modeling Using Petrel, Reservoir Engineering Applied Research, Artificial Lift, Artificial Lift System Selection & Design, Electrical Submersible Pumps (ESP), Enhance Oil Recovery (EOR), Hydraulic Fracturing, Sand Control Techniques, Perforating Methods & Design, Perforating Operations, Petroleum Exploration & Production, Hydrocarbon Exploration & Production, Exploration & Production, Play Assessment & Prospect Evaluation, Formation Evaluation, Petroleum Engineering Practices, Petroleum Hydrogeology & Hydrodynamics, Project Uncertainty, Decision Analysis & Risk Management, Decision Analysis & Uncertainty Management, Exploration & Development Geology, Sedimentology & Sequence Stratigraphy, Structural Interpretation in Exploration & Development, Petrel Geology, Geomodeling, Structural Geology, Applied Structural Geology in Hydrocarbon Exploration, Petrophysics, Geology of the Oil & Gas Field, Geophysics, Geothermal, Geochemical & Geo-Engineering and Drilling Applied Research, Field Geological Outcrop Mapping & Digital Cartography, Geological Modelling, Geoscience Management in E&P, Geoscience Modelling, Geological Mapping, Structural Geology-Tectonics, Structural Analysis, Tectonic Modelling and Numerical Simulation of Fractured Prospects & Reservoirs, Fracture Network Analysis & Modelling, Prospect Generation, Global Networking, Research and Technology Development Management for Fault & Fracture Analyses & Modelling, Fracture Modelling, Dynamic Modelling, Field Development Planning, Water Injection Planning, Stereophotogrammetry, Fault Mapping, GPS Survey, 2D & 3D Seismic Acquisition & Processing, 3D Seismic Surveys & Mapping, 3D GIS, GMAP, Sandbox Modelling, Sedimentological Logging, GR Logging, Surface & Subsurface 3D Modelling, Best Practices Management System (BPMS), Subsurface Work for Energy Projects, Digitalization Projects, Structural Model using Petrel, G&G Seismic & Well Data Modelling, GIS System Management, Database Management, Strategic Planning, Best Practices and Workflow, Quality Management, Project Management and Risk Assessment & Uncertainty Evaluation. Further, he is also well-versed in seismic interpretation, mapping & reservoir modelling tools like Petrel software, LandMark, Seisworks, Geoframe, Zmap and has extensive knowledge in MSDos, Unix, AutoCAD, MAP, Overlay, Quicksurf, 3DStudio, Esri ArcGIS, Visual Lisp, Fortran-77 and Clipper. Moreover, he is a world expert in analysis and modelling of fractured prospects and reservoirs and a specialist and developer of fracture modelling software tools such as FPDM, FMX and DMX Protocols.**

During his career life, Dr. Petrus held significant positions and dedication as the **Executive Director, Senior Geoscience Advisor, Exploration Manager, Project Manager, Manager, Chief Geologist, Chief of Exploration, Chief of Geoscience, Senior Geosciences Engineer, Senior Explorationist, Senior Geologist, Geologist, Senior Geoscientist, Geomodeller, Geoscientist, CPR Editor, Resources Auditor, Project Leader, Technical Leader, Team Leader, Scientific Researcher and Senior Instructor/Trainer** from various international companies and universities such as the Dragon Oil Holding Plc., ENOC, MENA, ENI Group of Companies, Ocre Geoscience Services (OGS), Burren RPL, Ministry of Oil-Iraq, Eni Corporate University, Standford University, European Universities, European Research Institutes, NorskHydro Oil Company, Oil E&P Companies, just to name a few.

Dr. Petrus has a **PhD in Geology and Tectonophysics** and **Master's and Bachelor's degree in Earth Sciences** from the **Utrecht University, The Netherlands**. Further, he is a **Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier** by the **Institute of Leadership & Management (ILM)**, a Secretary and Treasurer of Board of Directors of Multicultural Centre, Association Steunfonds SSH/SSR and Founding Member of Sfera Association. He has further published several scientific publications, journals, research papers and books and delivered numerous trainings, workshops, courses, seminars and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours: -

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	<i>Registration & Coffee</i>
0800 – 0815	<i>Welcome & Introduction</i>
0815 – 0830	PRE-TEST
0830 – 0930	Overview of Well Testing: The Importance in Reservoir Management
0930 – 0945	<i>Break</i>
0945 – 1030	Reservoir Fluids & Flow Regimes: The Different Fluid Types & Flow Patterns in Reservoirs
1030 – 1130	Basics of Well Test Analysis: Pressure Transient Analysis & its Application
1130 – 1230	Wellbore Dynamics & Temperature Effects: How Wellbore Conditions Affect Test Data
1230 – 1245	<i>Break</i>
1245 – 1330	Well Test Interpretation Software: Familiarization with Industry-Standard Software Tools
1330 – 1420	Safety Considerations in Well Testing: Emphasizing Safety Protocols & Environmental Considerations
1420 – 1430	Recap
1430	<i>Lunch & End of Day One</i>

Day 2

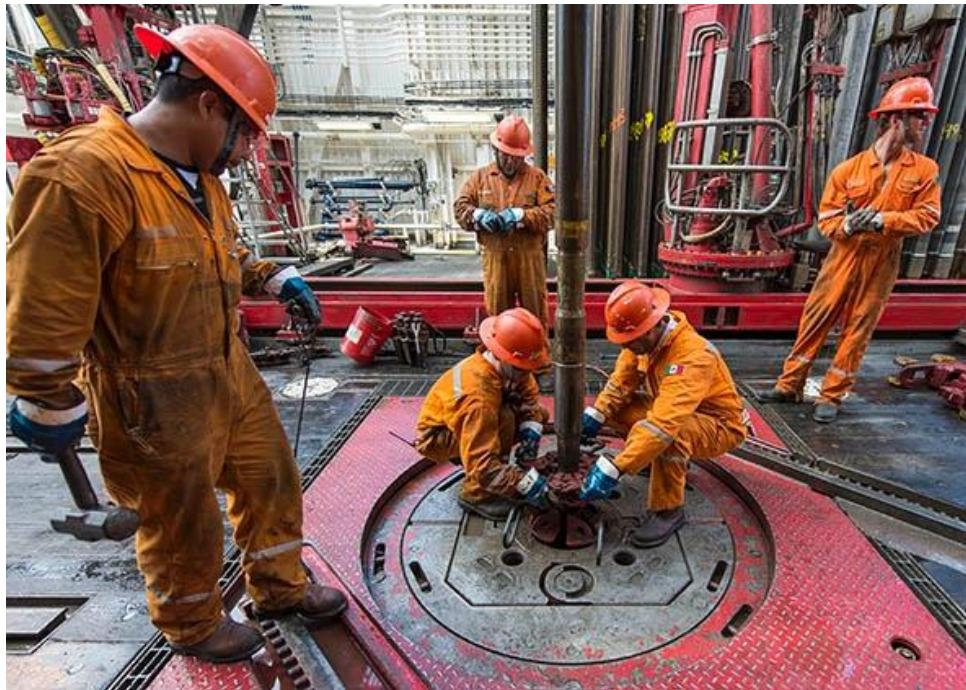
0730 – 0830	Buildup & Drawdown Tests: Detailed Analysis & Interpretation
0830 – 0930	Pressure Derivative Analysis: Techniques & Applications
0930 – 0945	<i>Break</i>
0945 – 1100	Type Curve Analysis: Utilizing Type Curves in Well Test Interpretation
1100 – 1230	Rate Transient Analysis: Techniques for Analyzing Variable Rate Tests
1230 – 1245	<i>Break</i>
1245 – 1330	Well Test Design & Planning: Key Considerations for Effective Test Design
1330 – 1420	Case Studies: Real-World Examples of Pressure Transient Analysis
1420 – 1430	Recap
1430	<i>Lunch & End of Day Two</i>

Day 3

0730 – 0830	Interference Testing: Theory, Design & Interpretation
0830 – 0930	Pulse Testing: The Methodology & Applications
0930 – 0945	Break
0945 – 1100	Multi-Rate Testing: Techniques for Analyzing Tests with Variable Rates
1100 – 1230	Wellbore Storage & Skin Effect: Identification & Analysis
1230 – 1245	Break
1245 – 1330	Gas Well Testing: Specific Considerations & Methodologies
1330 – 1420	Advanced Software Tools: Utilizing Complex Interpretation Software
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4

0730 – 0830	Naturally Fractured Reservoirs: Testing & Interpretation Challenges
0830 – 0930	Horizontal Well Testing: Specific Methodologies & Interpretations
0930 – 0945	Break
0945 – 1100	Reservoir Boundaries & Heterogeneities: Identification & Impact on Tests
1100 – 1230	Pressure Transient Behavior in Different Reservoir Types: Analysis of Various Reservoir Models
1230 – 1245	Break
1245 – 1330	Integration of Well Test Data with Reservoir Simulation: Enhancing Reservoir Models with Test Data
1330 – 1420	Group Work on Complex Reservoirs: Applying Concepts to Hypothetical Scenarios
1420 - 1430	Recap
1430	Lunch & End of Day Four


Day 5

0730 – 0830	Integrated Reservoir Management: Using Well Test Data for Reservoir Management Decisions
0830 – 0930	Real-Time Well Test Data Interpretation: Latest Trends & Technologies
0930 – 0945	Break
0945 – 1030	Pressure Transient Analysis in Unconventional Reservoirs: Specific Challenges & Solutions
1030 – 1130	Enhanced Oil Recovery (EOR) & Well Testing: Impact of EOR on Well Test Interpretation
1130 – 1230	Data Management & Reporting: Best Practices for Data Handling & Reporting
1230 – 1245	Break
1245 - 1345	Future of Well Testing: Emerging Technologies & Methodologies
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Jaryl Castillo, Tel: +974 6652 9196, Email: jaryl@haward.org