

COURSE OVERVIEW DE0420
API 6A: X-mas Tree & Wellhead
Operations, Maintenance & Testing

Course Title

API 6A: X-mas Tree & Wellhead Operations, Maintenance & Testing

Course Date/Venue

Please refer to page number 3

Course Reference

DE0420

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of API 6A: X-mas Tree & Wellhead Operations, Maintenance & Testing. It covers the components of a wellhead system and the fundamentals of API 6A standard; the X-mas tree system and its functionality in production and injection wells; the wellhead components and functions covering casing heads, casing spools, tubing heads and hangers, sealing mechanisms and load shoulders; the pressure ratings and temperature classes including materials and product specification levels (PSL); the installation procedures for wellhead equipment; and the X-mas tree assembly and installation.

Further, the course will also discuss the BPV (back pressure valve), TWCV (tubing wing check valve) and VR plug installation; the visual and dimensional checks and hydrostatic pressure testing; the leak testing and functional tests and documentation and test records; the maintenance schedules for wellhead and tree components and greasing and seal replacement; the valve maintenance and seat repair and troubleshooting common issues; and the tools and equipment for wellhead maintenance and types of valves in X-mas tree.

During this interactive course, participants will learn the valve operation, maintenance and surface safety systems and SCSSV, emergency shutdown (ESD) and safety protocols; the control panel operations, data logging and performance monitoring; the well integrity testing principles, hydrostatic and gas leak testing, BPV/TWCV and VR plug testing; the non-destructive testing (NDT) methods, flange and stud inspection and test documentation and QA/QC records; the common operational challenges and troubleshooting procedures; the hazard identification for wellhead activities, safe work practices (SWP), job safety analysis (JSA) and barrier management; the isolation of zones and plugging and valve sealing and pressure verification; and the use of plugs and barriers and re-entry planning and safety.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an in-depth knowledge on X-mas tree and wellhead operations, maintenance and testing in accordance with API 6A standards
- Identify the components of a wellhead system and the fundamentals of API 6A standard
- Discuss X-mas tree system and its functionality in production and injection wells
- Recognize wellhead components and functions covering casing heads, casing spools, tubing heads and hangers, sealing mechanisms and load shoulders
- Identify pressure ratings and temperature classes including materials and product specification levels (PSL)
- Carryout installation procedures for wellhead equipment as well as X-mas tree assembly and installation
- Apply BPV (back pressure valve), TWCV (tubing wing check valve) and VR plug installation
- Implement visual and dimensional checks, hydrostatic pressure testing, leak testing and functional tests and documentation and test records
- Employ maintenance schedules for wellhead and tree components, greasing and seal replacement, valve maintenance and seat repair and troubleshooting common issues
- Recognize tools and equipment for wellhead maintenance and types of valves in X-mas tree
- Employ valve operation, maintenance and surface safety systems and SCSSV, emergency shutdown (ESD) and safety protocols
- Carryout control panel operations, data logging and performance monitoring
- Discuss well integrity testing principles and apply hydrostatic and gas leak testing, BPV/TWCV and VR plug testing
- Apply non-destructive testing (NDT) methods, flange and stud inspection and test documentation and QA/QC records
- Recognize common operational challenges and employ troubleshooting procedures
- Employ hazard identification for wellhead activities, safe work practices (SWP), job safety analysis (JSA) and barrier management
- Apply isolation of zones and plugging, valve sealing and pressure verification, use of plugs and barriers and re-entry planning and safety

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive “Haward Smart Training Kit” (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides a complete and up-to-date overview of X-mas tree and wellhead for those who are involved in its operations, maintenance and testing. Field operations, production, maintenance, petroleum, reservoir and field engineers, wellhead maintenance supervisors, wellhead operations supervisors and other staff will definitely benefit from this course.

Course Date/Venue

Session(s)	Date	Venue
1	May 17-21, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
		Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
		Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
		Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
		Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
		Meeting Plus 9, City Centre Rotana, Doha, Qatar
		Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
7	March 28-April 01, 2027	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey

Course Fee

Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 8,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council for Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.
- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units (CEUs)** in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Hesham Abdou, PhD, MSc, BSc, is a **Senior Drilling & Petroleum Engineer** with over **30 years** of integrated industrial and academic experience as a **University Professor**. His specialization widely covers in the areas of **Wellbore Interventions, Wellbore & Reservoir Fundamentals for Slickline, Slickline Intervention, Slickline Well Intervention Procedures, Slickline Tools, Slickline Fishing Operations, Well Completion Design & Operations, Well Stimulation and Workover Planning, Horizontal & Multilateral Wells: Completions, Stimulation, Natural & Artificial Flow Well Completion, Well Testing Procedures Evaluation, Well Performance, Well Integrity Management, Well Casing & Cementing, Advanced Drilling, Nodal Analysis (Advanced), Integrated Nodal Analysis for Well Performance Optimization, Well & Reservoir Performance Analysis Using Nodal Methods, Production System Optimization Using Nodal Analysis, Artificial Lift Design & Nodal Analysis, Pressure Drop & Flow Performance in Subsurface Systems, Completion & Workover Technology, Workover Best Practices, Workover Operations, Workovers & Completion, Drilling & Completion Technology, Advanced Completion Design, Advanced Coiled Tubing Intervention Design, Casing & Tubing Design, Coiled Tubing Technology, Acidizing Techniques & Fluids Chemicals, Carbonates Acidizing & Sandstone Acidizing, Oil Recovery Methods Enhancement, Acid Gas Removal, Directional Drilling, Horizontal & Sidetracking, Drilling Operation Management, Drilling & Production Equipment, Equipment Drilling & Stuck Pipe Prevention, Heavy Oil Production & Treatment Techniques, Crude Oil Testing & Water Analysis, Crude Oil & Water Sampling Procedures, Equipment Handling Procedures, Crude & Vacuum Process Technology, Gas Conditioning, Gas Processing, Cooling Towers Operation & Troubleshooting, Sucker Rod Pumping, ESP, Gas Lift, PCP & Jet Pump, Pigging Operations, Electric Submersible Pumps (ESP), Progressive Cavity Pumps (PCP), Water Flooding, Water Lift Pumps Troubleshooting, Water System Design & Installation, Water Networks Design Procedures, Water Pump Process, Pipelines, Pumps, Turbines, Heat Exchangers, Separators, Heaters, Compressors, Storage Tanks, Valves Selection, Compressors, Tank & Tank Farm Operations & Performance, Oil & Gas Transportation, Oil & Gas Production Strategies, Artificial Lift Methods, Piping & Pumping Operations, Oil & Water Source Wells Restoration, Pump Performance Monitoring, Rotor Bearing Modelling, Hydraulic Repairs & Cylinder Root Cause Analysis, Vibration & Condition Monitoring, Piping Stress Analysis, Ammonia Gas Sweetening & Sulfur Recovery, Heat & Mass Transfer and Fluid Mechanics.**

During his career life, Dr. Hesham held significant positions and dedication as the **General Manager, Petroleum Engineering Assistant General Manager, Workover Assistant General Manager, Workover Department Manager, Artificial Section Head, Oil & Gas Production Engineer** and **Senior Instructor/Lecturer** from various companies and universities such as the Cairo University, Helwan University, British University in Egypt, Barakat University and Agiba Petroleum Company.

Dr. Hesham has a **PhD** and **Master's** degree in **Mechanical Power Engineering** and **Bachelor's** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** and a **Peer Reviewer**. Dr. Hesham is a member of Egyptian Engineering Syndicate and Society of Petroleum Engineering. Moreover, he has published technical papers and journals and has delivered numerous trainings, workshops, courses, seminars and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	Registration & Coffee
0800 – 0815	Welcome & Introduction
0815 – 0830	PRE-TEST
0830 – 0930	Overview of Wellhead Systems Definition & Components of a Wellhead System • Types of Wellheads: Surface & Subsea • Functions of a Wellhead • Relationship with X-Mas Tree
0930 – 0945	Break
0945 – 1030	API 6A Standard Fundamentals Scope & Structure of API 6A • Key Definitions & Terminology • Specification Levels (PSL) • Product Specification & Performance Ratings
1030 – 1130	X-Mas Tree System Overview X-Mas Tree versus Wellhead – Differences & Integration • Vertical & Horizontal X-Mas Tree Designs • Functionality in Production & Injection Wells • Importance of Pressure Control
1130 – 1215	Wellhead Components & Functions Casing Heads & Casing Spools • Tubing Heads & Hangers • Sealing Mechanisms & Load Shoulders • Test Plugs & Lockdown Screws
1215 – 1230	Break
1230 – 1330	Pressure Ratings & Temperature Classes Understanding Working Pressure Ratings • Temperature Class Requirements in API 6A • Material Class & Performance Rating Codes • Operating Envelope of Equipment
1330 – 1420	Materials & Product Specification Levels (PSL) PSL 1 To PSL 4 Applications • Material Selection (AA To HH) • NACE MR0175/ISO 15156 Requirements • Corrosion & Sour Service Considerations
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 – 0830	Installation Procedures for Wellhead Equipment Pre-Installation Inspection & Preparation • Installation Sequence (Casing Head, Spool, Tubing Head) • Alignment & Torqueing Procedures • Use of Running Tools
0830 – 0930	X-Mas Tree Assembly & Installation Installation Guidelines for Vertical & Horizontal Trees • Stud Tensioning & Bolt-Up Practices • Sealing & Lockdown Systems • Pressure Testing After Installation
0930 – 0945	Break
0945 – 1100	BPV/TWCV & VR Plug Installation BPV (Back Pressure Valve): Function & Types • TWCV (Tubing Wing Check Valve): Application & Removal • VR Plug Types & Installation Tools • Safety Considerations During Installation/Removal
1100 – 1215	Inspection & Testing of Equipment Visual & Dimensional Checks • Hydrostatic Pressure Testing • Leak Testing & Functional Tests • Documentation & Test Records
1215 – 1230	Break
1230 – 1330	Preventive & Corrective Maintenance Maintenance Schedules for Wellhead & Tree Components • Greasing & Seal Replacement • Valve Maintenance & Seat Repair • Troubleshooting Common Issues
1330 – 1420	Tools & Equipment for Wellhead Maintenance Running & Retrieval Tools • Pressure Testing Kits • Torque Wrenches & Hydraulic Equipment • Safety Gear & Barriers
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 – 0830	Types of Valves in X-Mas Tree Master Valves: Lower & Upper • Wing Valves: Production & Kill Line • Swab Valves & Crossover Valves • Valve Configurations
0830 – 0930	Valve Operation & Maintenance Manual versus Actuated Valves • Greasing & Seal Replacement • Testing & Calibration • Valve Seat Repair & Changeout
0930 – 0945	Break
0945 – 1100	Surface Safety Systems & SCSSV Surface-Controlled Subsurface Safety Valve (SCSSV) • Hydraulic Control Systems • Emergency Shutdown Valves • Testing & Validation
1100 – 1215	Emergency Shutdown (ESD) & Safety Protocols Overview of ESD Systems • Safety Valve Fail-Safe Mechanisms • H2S & High-Pressure Handling • Lockout/Tagout Procedures
1215 – 1230	Break
1230 – 1330	Control Panel Operations (Surface Control Panel) Pneumatic & Hydraulic Controls • Pressure Settings & Adjustments • Valve Position Indicators • Integration with DCS/PLC

1330 – 1420	Data Logging & Performance Monitoring Recording Valve Operations • Vibration & Pressure Sensors • Use of Digital Twin & Condition Monitoring • Integration with SCADA Systems
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 – 0830	Well Integrity Testing Principles Primary & Secondary Barriers • Surface & Subsurface Testing • Pressure Buildup & Bleed-Off • Leak Paths & Identification
0830 – 0930	Hydrostatic & Gas Leak Testing Test Procedures & Equipment • Acceptable Limits & Evaluation • Safety & Pre-Test Checklists • Post-Test Reporting
0930 – 0945	Break
0945 – 1100	BPV/TWCV & VR Plug Testing Test Bench Procedure for BPV • In-Situ VR Plug Test Methods • Pressure Hold & Leak Detection • Removal, Re-Inspection & Reinstallation
1100 – 1215	Non-Destructive Testing (NDT) Methods Ultrasonic & Magnetic Particle Testing • Dye Penetrant & Radiographic Inspection • Criteria for Acceptance & Rejection • Certification & Documentation
1215 – 1230	Break
1230 – 1330	Flange & Stud Inspection Surface Condition Evaluation • Bolt Torque & Tension Testing • Re-Tightening Protocols • Stud & Gasket Replacement
1330 – 1420	Test Documentation & QA/QC Records Test Plans & Procedures • Recordkeeping Per API 6A • Acceptance Criteria • Digital Records & Traceability
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 – 0830	Common Operational Challenges Valve Sticking & Leakage • Pressure Anomalies • Seal Degradation & Corrosion • Poor Alignment or Torque Errors
0830 – 0930	Troubleshooting Procedures Root Cause Analysis • Isolation of Faulty Components • Use of Diagnostic Tools • Repair versus Replacement Decision-Making
0930 – 0945	Break
0945 – 1100	Risk Assessment & Mitigation Hazard Identification for Wellhead Activities • Safe Work Practices (SWP) • Job Safety Analysis (JSA) • Barrier Management
1100 – 1230	Case Studies & Industry Incidents Real-Life Failures & Lessons Learned • Best Practices Adopted Post-Incident • Failure Modes & Effects Analysis (FMEA) • Regulatory Responses & Changes

1230 – 1245	Break
1245 – 1345	Well Abandonment & Re-Entry Isolation of Zones & Plugging • Valve Sealing & Pressure Verification • Use of Plugs & Barriers • Re-Entry Planning & Safety
1345 – 1400	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Jaryl Castillo, Tel: +974 6652 9196, Email: jaryl@haward.org